クリティカルシンキング入門

実務で活きる!効果的な問いの立て方

初動で何を押さえる? 取り組むべき問いについて、最初の一歩からずれてしまうと、異なる論点へ進んでしまう可能性があります。したがって、組織やチーム全体で方向性を共有することが非常に重要だと感じました。イシューを特定するためには、問いを明確にし、具体的に考え、一貫して押さえ続けることが大切です。 採用手法の見直しは? 実務においては、新卒採用や中途採用の手法について検討する際、キャリアフェアの動員数を増やすことだけに固執せず、イシューがどこにあるのか、そして他に利用できるチャネルを探求していく視点が重要だと学びました。 採用効率向上の方法は? はじめに、どのような手法が考えられるのかリサーチし、それを書き出してみます。そして、ターゲット層を分析し、具体的にどのような行動が採用効率を向上させるのかを検討していきたいと思います。

データ・アナリティクス入門

表面を超えた先の学び

本当の原因はどこ? 問題発生時には、表面的な事象に惑わされず、その根本原因を追求することの大切さを実感しました。今回のケースでは、売上低下の原因が巡り巡って採用施策の強化に結びつくとは、当初は想像もしていませんでした。 部署間の連携はどう? 目の前で起こっている現象は、複数の事象のごく一部に過ぎないと理解しました。そのため、自部署内の要因だけに着目するのではなく、関連部署との連携にも注意を払い、視野を広く保ちながら検証する必要があると考えています。 全体像を見渡せていますか? まずは、全体像を俯瞰し、どこでどのように配置され、活動が行われているのかを把握することから始めました。その上で、ボトルネックとなっている部分に関連する事象を丁寧に確認し、検証を進めることで、有効な仮説を構築できると感じています。

マーケティング入門

日常に潜む学びのヒント

シーンが需要を拓く? 自社の商品は嗜好性が高いため、もともとのターゲット以外の顧客を獲得するのは容易ではありません。しかし、例えばぬいぐるみが旅行や観劇、ライブなどのシーンで写真に収められることによって、これまで子供向けとされていた需要が大人層にも広がる可能性があります。このように、使用シーンを想起させるプロモーションの力は、定番商品の売り上げ拡大にも寄与する有効な手法であると感じました。 別層への戦略は? また、定番商品の既存顧客以外への訴求を検討する際には、どのシーンが考えられるのか改めて商品の特性を観察することが重要です。さらに、新商品についても、従来のターゲット層に加えて別の層へどのようなアプローチが可能かを再考し、二面的な展開でプロモーション戦略を構築するなど、一度自身の手法を見直す必要性を実感しました。

データ・アナリティクス入門

分析で見つけるビジネス成長の鍵

明確な分析目的を設定するには? 分析を行う目的を明確にし、必要なデータを適切に特定する重要性を再確認しました。指示する側とされる側の間で、作業前に前提条件にずれがないか確認する必要性も理解しました。このプロセスは、KPI設定や検証の際にも当てはまります。設定した目標が会社の方針と一致しているか、常に確認することが求められます。次回の対策を考えるためには、分析に必要なデータにズレがないかを検証し、そのデータが本当に有効かどうかを追求します。 ターゲットの再選定は必要? また、会社としてターゲットをどこに設定するかを再選定する必要があります。現在の顧客の業種別売上傾向やエリア別売上を詳細に分析し、各エリアの特性や注力すべき業種を見極めます。また、機会損失が発生している箇所を特定し、適切な対策を講じることが求められます。

クリティカルシンキング入門

多角的視点で広がる学びの力

切り口の多様性は必要? 切り口が一つだけだと、偏った答えになる可能性があることがわかりました。しかし、複数の切り口を見つけるのは難しいとも感じました。自分が導きたい答えを得るために切り口を模索するという方法もあるのでは、と考えました。 実務での発見と応用 実務では、複数の業務を同時に行っているため、チームの弱点や強みを発見することに役立つと思います。今年の自分の目標の達成にも、多角的な視点での分析が重要だと考えています。 マインドの数値化は可能か? 昨年一年をかけて取り組んだプロジェクトでは、マインドを数値化するのは難しいと感じていました。しかし、異なる切り口を探して、数値化が可能でないか再考したいと思います。現在数値化されている部分についても、他の切り口がないか再検討し続けたいと考えています。

戦略思考入門

やる気を戦略に変える道

高校生のやる気はどう整理? 高校生が持つ多くのやる気をどのように整理し、適切な優先順位をつけてもらうかという問題に対して、効果的なコーチング方法を考える良いきっかけとなりました。やりたい気持ちが多いことは理解できる一方で、無計画に進めた場合にどのような結果が生じるかを考える必要があり、自己分析をしっかり行い、自分が目指す姿を明確にして進む大切さを改めて実感しました。 チーム目標はどう明確に? また、目標を自分自身だけでなく、チーム全体で共有し明確にすることが非常に重要だと感じました。競合状況や利用可能なリソースを踏まえて、戦略的にチームを作り上げることが私自身の課題として浮き彫りになり、このコースを通じて戦略的な考え方を習得し、チームメンバーと共有していく意欲が高まりました。

データ・アナリティクス入門

仮説が切り拓く多彩な世界

どう仮説を活かす? 仮説を立てることで、物事に対して多角的なアプローチが可能になります。偏った考えに陥らず、さまざまな観点から状況を把握することにより、自分自身の理解を深めるとともに、他者を説得するための材料としても活用できるメリットがあります。例えば、「こうだったら、こうではないか?」や「その逆はどうか?」といった問いかけを行うことで、あらゆる角度から物事を捉える習慣を身につけることができます。 ビッグデータ検証は? ビッグデータを扱う際には、仮説の重要性が特に高まります。決めつけることなく、あらゆる可能性を念頭に置いて分析することで、物事の本質に迫ることができるのです。また、このアプローチは、他者への提案や情報の共有にも役立ち、柔軟な発想を促す大切な手法と言えるでしょう.

データ・アナリティクス入門

業務の壁、ロジックツリーで突破

現状の課題は何? 現状の業務はマンパワーに依存しており、その結果としてメンバーが常に疲弊していると感じています。これまでいろいろ検討してきましたが、改めて状況を客観的に把握するため、今回学んだロジックツリーを用いて現状の課題を書き出そうと思いました。また、問題点が十分に認識されず、日々のルーチン業務に流されがちなため、what/where/why/howを意識し、積極的に問題提起を行いたいと考えています。 解決策はどう考える? すぐに業務に結び付けるためには訓練が必要だと感じています。そのため、教材で示されたコツや留意点を参考に、身近な問題解決にロジックツリーを活用する取り組みを始めます。さらに、解決の切り口となる項目をできるだけ多く洗い出すよう努めていきたいと思います。

データ・アナリティクス入門

角度変えて見つける学びの真髄

多角的に見る大切さは? 物事は一方向からだけではなく、さまざまな角度から捉えることで本質に迫ることができます。一つのデータだけでなく、多くの情報を比較検討しながら分析を進める必要があり、見極める力を養うことが大切です。 データ活用のポイントは? 定量データを扱うことが多い中で、そのデータをどう活かすかを常に検討することが求められます。正確なデータの取り扱いをはじめ、集めた情報を蓄積し、前後の変化を比較することが、分析力向上の基礎となります。 数字のパワーを知る? また、分析により提案が有力な判断材料となるよう、数字の扱い方や活用方法にも工夫が必要です。数字が持つパワーは、その扱い方次第で大きく変わるため、具体的な活用策を考えることが重要です。

戦略思考入門

SWOT分析で見つけた新視点

分析手法はどう活かす? 3C分析やSWOT分析が特に学びになりました。普段、顧客のニーズには気を配っているものの、市場のマクロな視点が不足していると気づく機会となりました。SWOT分析では、頭の中でなんとなく考えていた内容が図式化されることで整理され、今後も活用していきたいと感じました。 実務で何を感じた? 自分のクライアントワークにおいて、これらのフレームワークが大いに役立つと実感しています。特に初動でプロダクトの方針を定める際、分析を通じて顧客と互いの弱みや強みを共有し、具体的な方針の策定につなげることができると思います。双方の認識のずれを防ぎ、現状の課題や強みを明確にすることで、その後のプロダクト拡張にも寄与すると考えています。

データ・アナリティクス入門

エクセルで紐解く学びのヒント

どんな分析で進める? これまでの業務で、約100名を対象とした分析を行う機会がありました。エクセルを用いたビジュアル化が簡単にできるため、基本的には中央値と標準偏差を中心にデータの分布を確認していました。しかし、平均値など他の代表値も併せて計算し、データ全体を多角的に眺めた上で仮説を立て、分析を進めるフローが重要だと感じています。 どう観察すれば精度? また、サンプル数が少ない場合であっても決めつけず、平均値などを算出してデータをしっかりと観察することで、より精度の高い分析が可能になると考えています。このようなフローを週に1回以上実施し、標準偏差などの統計値は適宜AIに質問したり、エクセルの関数を活用するなどして算出しています。

データ・アナリティクス入門

グラフで魅せる平均の真実

どの平均を採る? 平均という言葉一つをとっても、その状況にふさわしい計算方法を採用しなければ、意味をなさないと感じています。どの平均値を用いるべきか、またどの数値を算出すべきかを十分に理解し、それぞれに合った平均値を出すことが大切だと思います。さらに、グラフを活用することで、視覚的にわかりやすい情報提供ができると考えています。 ビッグデータの平均は? 実際のところ、現在の業務においては平均値を用いる場面はあまりありません。しかし、扱うデータ量が多いビッグデータの現場では、いずれ必要になると予想されます。その際には、どの平均を選択すべきかを慎重に検討し、わかりやすいグラフによってデータを効果的に提示していきたいと思います。

40代の女性に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right