デザイン思考入門

共感と挑戦のデザイン学習

ゴールはどう捉える? 様々な手法や考え方で課題解決に取り組む中で、最終的なゴールは共通していました。それは、ユーザーの本質的な課題を捉え、解決策を提示して共感を生むプロトタイプを作り上げることです。発表時にはいくつかの質問を受け、まだ足りない部分や改善点を発見できた点が印象的でした。これは普段の業務でも同様の流れであり、プロトタイプ作成時に浮かんだ疑問点などを次の機会に備えて蓄積しておくことが大切だと感じました。 行動で変化起こす? また、課題の『重さ』に対して、それぞれ異なるアプローチがあったことも印象に残りました。受講している皆さんは自ら行動し、周囲を動かす力を持っていると感じます。各自が現場に戻り活躍される姿が目に浮かび、私もその一員となるべく努力しようと思いました。 新プロジェクトの意図は? 来月から2月にかけて、新たなプロジェクトに取り組む予定です。アンケート調査はすでに完了し、現在は集計と分析を進めている段階です。今まで学んだ手法を活かして、根本的な課題を見出し、クライアントが望むものとユーザーが求めるものがフィットする提案を目指します。まずは『パリュー・プロポジション・キャンバス』を個人で試行し、ファシリテーションができるよう準備を進め、チームでの課題解決に繋げたいと考えています。 デザイン思考の軌道は? 直近では、今回のプロジェクトにおいて『デザイン思考』を取り入れます。12月はアンケート調査の分析を行い、KJ法で分類した内容をバリュー・プロポジション・キャンバスで整理し、ワイヤーフレームを作成します。1月には情報設計を経てプレゼンテーション用の資料を作成し、修正を重ねながらプロトタイプを完成させ、改善を続けます。2月にはプロトタイプを基にデザイン作業に移り、月末には承認を得るためのプレゼンテーションを実施し、3月の公開を目指す流れです。

リーダーシップ・キャリアビジョン入門

反省と成長で磨く真のリーダーシップ

実践できなかった理由は? これまでの学びを総動員しようとしたものの、実際には十分に活かしきれていない感触がありました。学んだ理論がすぐに薄れてしまう中で、過去の講義で気づいた自分の不足点―すなわちメンバーに寄り添う姿勢―は、多少意識できたと感じています。組織全体のゴールを追うことも大切ですが、目の前のメンバーをよく観察し、寄り添うことで、その時々に最適なリーダーシップの形が見えてくるのではないかと考えています。 新たなリーダー像は? 受講当初はリーダー像がぼんやりとしていましたが、これまでの振り返りを通じて、目指すべきリーダー像が徐々に明確になったことには驚きを覚えました。後進の指導に限界を感じていた当初の自分に対し、欠けていた部分を補うべく新たなリーダー像を志すことが、一筋の光明となりました。ただし、常に意識を持たないと、以前の自分が出てしまうため、その点には気を付ける必要があります。 具体的な行動は? これまでの実務では、主にメンバーの観察や洞察にとどまっていました。しかし、見えてきた理想のリーダー像を実践するために、今後はコミュニケーションやフィードバックなど、具体的な行動に移すことに注力したいと考えています。特にフィードバックは、定期的に行うのではなく、各業務や進捗に応じて柔軟に実施することで、メンバー自身が現状を把握し、新たな視点やモチベーションを見出すことにつながると期待しています。 不足点の克服法は? 自分自身に不足している点がまだ多いと自覚しながらも、その真摯な姿勢こそがリーダーシップを発揮する上で大切な要素だと感じています。自分が目指すべきありたい姿やリーダーシップと、実務で求められる業務やゴールとの間にはギャップが生じると考えていますが、そのギャップを埋めるために今後どのような能力やスキルが必要なのか、引き続き模索していく所存です。

データ・アナリティクス入門

数字が照らす学びの道

どうやって特徴を捉える? 大量データを比較する方法として、まずデータの特徴をひとつの数字に集約し、グラフ化して視覚的に把握する手法を学びました。これにより、数値としての評価だけでなく、データの散らばりや傾向も同時に捉えることが可能になります。 平均値の違いを知る? 平均値や中央値を確認するために、単純平均、加重平均、幾何平均、そして中央値の各手法を比較しました。今まで単純平均や加重平均を主に用いていたため、このうち幾何平均と中央値の手順が分かっていなかったために、業務上物足りなさを感じていた点に気づくことができました。 分布の形はどう判断? また、データの平均的な分布をグラフ化することで、これまで感覚的に捉えていたデータの散らばりを、標準偏差などの具体的な数字として表現する必要性を認識しました。こうした数値化は、データのばらつきが大きいのか小さいのかを明確に捉える上で非常に有効です。 利用状況をどう見る? さらに、提供しているサービスの利用状況を単なる数の集計として週次報告している現状に対して、まだ活用できていないデータの中に、利用者の属性や利用時間帯などの詳細な情報が含まれているのではないかと考えるようになりました。これらを分析することで、サービスの改善点や利用者の利便性向上につながる提案が可能になると感じています。同様に、ライセンスやクラウドの予算についても、感覚的な予測に頼らずデータに基づいた数値をフィードバックすることで、より説得力のある結果に結びつくと考えています。 予測結果は合致? また、1年前に作成した将来のクラウド利用予測と現状を比較するタイミングを迎えたことから、その分析を活用し、利用していなかったデータも含めてさらに掘り下げていこうと考えています。あわせて、学習用の動画を見直すことで、自分自身の理解をより一層深める予定です。

データ・アナリティクス入門

データが照らす学びの軌跡

意思決定はどのように? ジレンマに直面した際の意思決定プロセスについて、具体的な手順を学びました。仮説を立て、その仮説に基づいてデータを収集し、最終的な結論につなげる基本的なプロセスが身についてきたと実感しています。特に、ある教育機関で見られた事例―忙しさから採用候補者の面接時間が確保できない一方で、面接を行わなければ生徒からの不満が蓄積し、経営に悪影響を及ぼす可能性がある―は、自分がスケジュールを詰め込みすぎている点に気づかされる貴重な経験となりました。講義の冒頭で「データ分析においては、何を目的とするかが極めて重要である」という話を聞いて、改めてその本質に立ち返る機会となりました。 人口減少策をどう見る? 人口減少対策においては、何をもって効果とするか判断するのが難しく、一見、あらゆる施策を試すような印象を受けますが、実際にはリソースが限られているため、何を課題として捉えるかが大切です。今一度、どのような仮説を立て、どんな事業を展開し、結果をどのように検証するかという一連のプロセスについて考え直す必要があると感じています。最近、ある地域の各自治体が実施する政策の一部を説明変数として、UIJターンに影響を与える要因を分析した論文に触れる機会がありました。施策分野ごとに縦割りで考えがちな現状に対して、異なる組み合わせが流入人口に与える影響を示すデータに、非常に新たな視点を得ることができました。 データ調査の下準備は? 自力で高度な分析を行うには限界があるものの、まずは地域内の市町村が実施している政策を類型化し、その一覧を作成するなど、データによる調査の下準備が可能だと考えています。具体的には、関係人口や交流人口を創出する施策、雇用創出に関する施策、住居に関する施策、さらに子どもや子育て支援に関する施策について整理し、評価データをまとめていく予定です。

戦略思考入門

一呼吸で読み解く経営戦略の変革

競合とどう向き合う? 顧客や目先の競合に意識が偏りやすい中、3CやVRIOといったフレームワークを用い、一呼吸おく習慣を実践でルーチン化する必要性を実感しました。 差別化の秘訣は? また、差別化戦略においては、持続可能性の観点を踏まえながら、自社の強みを中立的な視野で検討することが重要だと感じています。自社の強みが、時間軸を含めた模倣リスクの大きさにどの程度さらされているかを、ネガティブな視点からもしっかり捉える必要があります。 投資効果はどう見る? さらに、実現可能性の面では、投資に値する市場であるかどうかを費用対効果の観点から分析するなど、経営全体を俯瞰する視点の重要性を改めて認識しました。 強化策はどう進める? これまでのバリューチェーンの検証に加え、顧客のニーズ、特に潜在ニーズを把握するための技術情報やマーケティング活動から得られるデータをもとに、自社の強みをさらにどう強化すれば差別化に最も効果的かを、中期経営計画やM&A検討プロセスに反映させていきたいと考えています。 スキルはどう磨く? 私はこれまで、製造業向けの自動化や省力化のビジネスに取り組んできました。かつては、多少のオーバースペック品を低価格で提供することが最良とされるハードビジネスの現場で活動していましたが、近年は、IoT、DX、サーキュラーエコノミーといった社会のトレンドに即したソフトビジネスへとシフトしています。その中で、エンジニアリングスキルやコンサルティング能力、また経営学、会計、ファイナンス、マーケティング、さらには各工学分野など幅広い知識の向上が求められており、マルチタスクでのスキルアップが必要となっています。皆さまは、日々のストイックな取り組みの中で、どのようにしてモチベーションを維持されているのか、ぜひポジティブなご意見をお聞かせいただければ幸いです。

デザイン思考入門

実践から生む学びへのヒント

学生支援はどう実現? 自身の高専教員としての立場から、これまでの学びを実践に活かすための取り組みを行いました。まず、学生が直面する「基礎をしっかり学びたいが演習時間が足りない」というジレンマについて、その構造を明確に整理しました。学生が陥りやすい回避行動(課題の丸写しや要領だけの学習など)を予測し、それらを防止するための支援策を設計することで、より効果的なサポートを実現しました。 必要ツールは何だろ? また、各科目で最低限必要な学習ツールを特定し、その使い方を段階的に指導する「学びの三種の神器」の提供にも努めました。学生の成長に合わせた発展的なツールの提案、そして理解度や興味に合わせた課題の難易度調整や柔軟なグループ学習と個別学習の組み合わせにより、一人ひとりにカスタマイズ可能な学習支援を目指しました。 アプローチの効果は? さらに、「山と道」のアプローチを高専の教育現場に応用することで、いくつかの重要な気づきを得ました。まず、教員自身が学生と同じ立場で課題に取り組むことで、表面には現れにくい困難点が明確になり、学生の具体的な声を構造化できることを実感しました。これにより、より効果的な支援策の構築が可能となりました。 基礎習得はどう見る? また、基本的なツールや知識の確実な習得を前提とし、その上で個々の興味や理解度に応じた発展的な学びを提供する段階的設計が極めて重要であると感じました。加えて、小規模な改善を迅速に試み、学生のフィードバックを即座に反映させる継続的な実践と改善のプロセスが、教育の質向上につながると理解しました。 改善サイクルはどう機能? こうした経験を通じ、教育現場にも使用者視点に立った改善サイクルが存在することを改めて認識しました。今後もこの視点を大切にし、より効果的な教育実践を追求していきたいと考えています。

戦略思考入門

やめる勇気が未来を変える

日常に戦略思考はどう? 戦略的思考のフレームワークは、ビジネスだけでなく日常生活にも大いに役立ちます。まず自分自身や組織の使命や目標を明確にし、目指すべき方向性やその理由を検討することが重要です。 強みと弱みはどう? そのためには、自身や組織の強みと弱みをしっかりと把握し、政治、経済、社会、技術といった外部環境の変化を十分に考慮する必要があります。こうした分析は、競合との差別化を図るための効果的な戦略の構築に大きく貢献します。 何をやめる勇気は? また、戦略的思考においては「何をしないか」「何をやめるか」という決断も非常に重要です。多くの場合、全てを実現しようとするあまり、不要な取り組みを続けがちですが、あえて「ノー」と言えるかどうかが、成功へのカギとなります。 合意はどう進む? 私自身、現在の職務でマーケット分析や戦略計画を行う際に、このフレームワークの有用性を実感しています。全体を俯瞰し、外部環境や関係者の視点を広く取り入れることで、より客観的な判断が可能になりました。しかし、一方で複数の関係者の合意を得ることは簡単ではなく、特に「どの取り組みを見送るか」という決断には大きな抵抗が伴います。 実行戦略は何が鍵? それでも、差別化戦略を成功させるためには、実施する内容だけでなく、あえて取り組まない内容を明確にすることが不可欠です。このような中で、優れたリーダーシップと変革を推進するマネジメントスキルが求められます。 チームの未来はどう? 製品やサービスの廃止に対する抵抗感を乗り越えるためには、戦略計画の基本に立ち返り、チームメンバーとともに現状と目標を明確にするセッションが大いに役立ちます。長期的な視点と、何を捨てるべきかという明確な戦略を組み合わせることで、メンバーは全体像を捉え、将来の目標に集中しやすくなると感じています。

データ・アナリティクス入門

データが教えてくれた学びのヒント

代表値で全体像は? データをどのように加工して把握しやすくするかを学びました。まず、代表値を求めることで全体像をシンプルに掴む方法を理解しました。代表値としてよく使われる平均値は、データ全体の傾向を捉える上で便利ですが、ばらつきを反映しにくいという欠点があります。そのため、目的に応じて加重平均、幾何平均、中央値などの手法を使い分ける必要があると感じました。 偏りはどう捉える? また、データの偏りを把握するために標準偏差が有効であることを学びました。標準偏差は、複数のデータが平均値からどれほど離れているかを示し、ばらつきを具体的に表現する指標として役立ちます。 グラフと予測は? さらに、グラフ化されたデータにアプローチする方法も学習しました。グラフ上の特徴的な部分に着目することで、問題点を深堀りしやすくなるという点や、グラフを見る前に予測を立て、その予測と実際のデータを比較する方法が、分析の深化に効果的だと感じました。データ同士を比較し、仮説を立てることで、次に分析すべき方向性が明確になるのだと実感しました。 代表値の使い分けは? 代表値の選び方についても触れました。たとえば、年度ごとの収益を分析する際、単に平均の粗利額を示すのではなく、プロジェクトごとに異なる売上金額を加味して加重平均を採用することで、より適切な表現が可能になると考えました。また、ばらつきの表現に標準偏差を用いることについては、これまであまり意識していなかったため、今後は積極的に活用していきたいと感じました。 学びをどう活かす? 今回の学びを通じて、データを多角的に把握することの重要性を再認識しました。今後は、常に自分の予測と実際のデータとのギャップに注目し、過去のデータや他のプロジェクトのデータとも比較しながら、具体的な仮説を立てて深堀りを進めていきたいと思います。

データ・アナリティクス入門

問題の原因をデータ分析で解明!

問題の原因をどう探る? 問題の原因を探るためには、データを確認しながら原因を突き止めることが重要です。問題の原因を明らかにするために、プロセスを分散して問題箇所を絞り込み、原因の仮説を立てるのが効果的です。問題がある場合、その結果には必ずその流れがあり、その流れを押さえることで、プロセスのどの段階に問題があるのかを特定できます。 解決策の検討はどう進める? 解決策を検討する際は、複数の選択肢を洗い出し、根拠を持って絞り込むことが求められます。ステップを踏んでデータを分析し、問題解決の精度を高めることと、仮説を試しながらデータを収集し、より良い問題解決に繋げることは、両者のアプローチを組み合わせることが効果的です。まず手始めに身の回りのデータを分析すること、分析の練習を積み重ねること、そしてどんな分析計画を立てるかシミュレーションし、どんな情報を誰から収集するのか、データはどんな形で収集すればよいかを考えることが大切です。 シンプルで低コストなA/Bテストの利点 A/Bテストは、AとBの施策を比較するシンプルなテストです。運用や判断がしやすく、低コストで少ない工数で実施できるため、リスクが少ない。A/Bテストを行う際には、目的や仮説をしっかりと明確にし、有効なデータが集まるまで実施します。ただし、複数の要素をテストしたい場合には別の手法を検討すべきです。また、パターンは同時に同じ期間行うことが必要です。 データ分析の第一歩は何から始める? 解決策を考えるときには、必ず複数の選択肢を検討し、「ステップを踏んでのデータ分析」と「仮説を試しながらのデータ収集」の両輪で分析を行うことが効果的です。分析が苦手な方には、まず身の回りのデータを分析すること、分析の練習を積み重ねること、そして問題にはそこに至るまでの流れがあることを意識することをお勧めします。

デザイン思考入門

心と色で拓くビジネスの未来

色で感情は伝わる? まず、自己紹介の際に「今の気分は何色か」を色で表現するというお題に取り組むよう指示された点が印象に残りました。最初は意外に感じたものの、先生から「デザイン思考では物事をビジュアル化することが重要」と説明され、なるほどと納得しました。普段、仕事や私生活でさまざまな表現方法を用いているものの、色で気持ちを表すという発想はあまり意識していなかったため、新鮮に感じました。 デザインはなぜ重要? 次に、「ビジネスプランからデザインへ」というテーマの講義で、改めて気づかされることがありました。ビジネスを生み出す際、市場価値や競合状況、資金繰りなどの分析が重要視されると同時に、顧客そのものやその行動に注目し、顧客体験価値を最大化するアプローチが存在することを学びました。この考え方が、「初めから万人ウケするものは作れない」という現実を実感させ、デザイン思考の価値を感じさせるものでした。 新発想の壁は? 現在、私はSIerに勤め、新たなビジネスプランを考える立場にあります。IT業界では、AIを活用した取り組みが多く見受けられますが、既存サービスについては既に多くのアイディアが出されている状況です。そのため、従来のマーケット分析だけではなかなか新しい発想にたどり着くのが難しいと感じていました。 共感はどこで生まれる? そこで、今回学んだ「人間中心」や「顧客体験価値を最大化する」という視点で、まずは一般企業の従業員の中から特にどの部署・誰に焦点を当て、どれだけ共感できるかを試みることにしました。これまでは、ビジネスを考える際「モノ」ではなく「コト」に着目していましたが、具体的なイメージがつかみにくく、行き詰まりを感じていました。今後は、改めて「ヒト」を重視し、顧客の行動や体験に寄り添いながら、新しいビジネスの可能性を探っていきたいと思います。

クリティカルシンキング入門

深掘りの習慣で得た視点の力

深く考える習慣をどう養う? 物事を深く考える習慣を身につけることが大切だと感じました。表面的な情報にとどまらず、本質や意図を常に考える姿勢を保ちながら、鋭敏な感性を持つことが重要です。物の見方も偏らず、多様な視点で捉える姿勢が大事です。新しい発見や視点から考えることで、これまで気づかなかった発見に出会えるのではないかと思います。また、感情に流されることなく、感情的にならずに判断することが求められます。これらのプロセスを経て、質問する力がつき、自信も生まれるでしょう。こうした過程が、正解に至るためのプロセスであり、それこそがクリティカルシンキングだと感じています。 IT業界での活用法は? 私はIT業界に従事していますが、問題解決やトラブルシューティングの場面でこの考え方が役立ちそうです。エラーが発生した際にはまず「その本質は何か?」と考えることから始めます。また、要件定義や仕様書作成の際にも、顧客の要件や要望を本質から理解することで、顧客要望の実現度に比例した品質を追求できます。プロジェクトの意思決定でも、複数の選択肢からベストなものを判断する助けとなるでしょう。具体的な例では、コードレビューが挙げられ、そのロジックが何を実現しようとしているのかを把握するのに有効です。リスク評価やセキュリティ対策など、ほぼすべての場面でこの考え方が役立つと感じています。 具体的なスキル向上法は? まず、明確な目標を設定し、どの業務や場面に適用するか課題を設定します。次に情報収集を行い、報告する情報や受け取る情報の正確性を確認します。その際、情報を疑ってみたり、批判的に見る癖をつけます。話をする際には複数の視点を持ち、問題を小さな単位に分解して考える習慣をつけます。また、感情的になるのを避け、感情と事実を分けます。これらを習得し続けてスキルを磨くよう努力を続けます。

クリティカルシンキング入門

問いが切り拓く未来の一歩

どの問いから始める? どのような問いを立てるかが、その後の取り組みを決定づけます。具体的に考えるべき内容、実現すべき点―すなわちイシュー―を明確にした上で、どのような取り組みを実施すべきかを検討することが非常に重要だと感じます。 具体例は何を語る? ある事例では、2000年代の大手飲食チェーンの実例が紹介されました。最終的には基本的価値の実現を目指した取り組みとなり、奇をてらう必要はなく、現状の経営視点から素直に導かれる施策が体験できました。 本質の問いは何? 本質を捉える問いを立てるためには、まず「問い」から始めること、そして自分の中でその問いを持ち続け、組織全体で共有することが大切です。さらに、クリティカルシンキングの第一歩として、今ここで答えを出すべき問い―イシューを特定することが求められます。問いを特定する際は、問いの形にする、具体的に考える、一貫して意識し続けるという点に留意する必要があります。 論理構築はどう進む? また、ピラミッドストラクチャーというフレームワークを活用することで、STEP1.イシューを特定する、STEP2.論理の枠組みを考える、STEP3.主張を適切な根拠で支えるという手順により、より明確な文章を作成する取り組みが可能となります。 手法の活用は適切? こうした手法を、新しいテーマに取り組む際にも生かし、現状や環境を正しく認識しながら次なる施策につなげていくことが重要だと考えています。実際、報告書などの文書作成においても、これらの方法論を実践することで、より明瞭で説得力のある内容になると感じました。 日常の問いはどんな? また、日常的にどのように「問い」を立て、第一歩を踏み出して実践していくかを考えることが、今後の課題であり、常に意識して取り組んでいきたいと思います。
AIコーチング導線バナー

50代に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right