クリティカルシンキング入門

数字に惑わされぬ視点の磨き方

なぜ数値に固執する? 数字を分析する際、自分の仮説を証明しようと特定の数値にこだわってしまい、少しの分析で思考が止まってしまう癖に気づきました。本来、数字は客観的なデータとして取り扱い、そこから見えてくる問題の本質をファクトとして捉え、その後に物事を考えるステップを踏むことが重要だと感じています。 採用で見落とすポイントは? 採用業務においては、応募数、書類選考、面接通過、内定承諾といった時系列データを元に、過去の数値と比較しながら問題点や成功点を見極める必要があります。しかし、これらの数値だけでは、表面上は問題がなさそうに見える場合でも、実際には採用候補者の属性や自社の面接体制など、より詳細な要素に目を向ける必要があると痛感しました。こうした観点で情報を整理していくことで、よりクリティカルな問題解決に結びつく可能性が高まると考えています。

クリティカルシンキング入門

伝えたい思いを整理する力を育む

伝え方はどう? 私は、主語と述語を正しく使えず、自分の考えを十分に相手に伝えられていないことに気づきました。説明の際には、思いついたことを整理せずに話していたため、相手には何を言っているのかわからない状態が多かったのだと思います。 誤解はなぜ起こる? 業務では、分析した内容や考えたことを相手に伝える役割を担ってきましたが、整理されていないまま情報を伝えていたため、「それはどういう意味?」と聞き返されることがしばしばありました。したがって、これからは伝えたい内容を整理し、順序立てて伝えることを意識していきます。 報告の極意は? 報告や伝達を行う際には、まず伝える内容を書き出し、整理することが重要です。伝えたい内容のゴールが何か、そのゴールにどのような要素が必要かをきちんと整理し、相手にとってわかりやすく伝える方法を心掛けていきます。

戦略思考入門

フレームワークで広がる戦略の未来

どのフレームワークを使う? 戦略を考える際に有効なフレームワークについて学び、3C分析、SWOT分析、PEST分析、バリューチェーン分析といった手法を実際に目に見える形で整理する方法を学びました。実践的な使い方も教わったので、早速分析に取り入れてみたいと考えています。 対話で見落とし防げる? また、クライアントとの対話においても、これらのフレームワークを活用することで、話し合いながら整理し、見落としを防ぐことができると感じました。このプロセスを通じて、より効果的な提案ができるのではないかと思います。 どう戦略スキル向上する? 現在、ひとりで業務を進める中でクライアントワークに専念しているため、戦略を考える機会は限られています。今後は、まずフレームワークを使ってしっかりと分析を行い、戦略立案のスキルを高めていきたいと思います。

クリティカルシンキング入門

考える力を育む日本語体験

日本語の奥深さは何? 日本語の特徴について改めて考える機会となりました。普段何気なく使っている母国語である日本語ですが、その奥深さに気付かされる瞬間がありました。 ピラミッドの効果はどうなる? また、ピラミッドストラクチャーのポイントを整理することができ、問いをかけられることで思考が活性化されると実感しました。説明を構成するプロセスを通じ、一連の思考過程を体験できたのは大きな収穫でした。 論理展開の基盤は何でしょう? さらに、日常の業務やステークホルダーとの会話の中で、論理的な主張をするためには、主張を確かな根拠で支えることが重要であると感じました。つまり、言いたいこととその理由を明確に伝えることが肝要だと改めて認識しました。 特徴の活かし方はどう? 同時に、日本語の特徴を的確に捉えて活用する必要性も強く感じました。

データ・アナリティクス入門

仮説と実践で拓く最適解

プロセス改善の秘密は? 問題解決のステップの枠組みを学ぶ中で、複数の切り口から解決策を検討するプロセスを整理する方法の大切さを実感しました。各プロセスごとに重要点に沿って仮説を立て、判断基準を明確にすることで、より的確な解決策が導き出されると感じました。また、A/Bテストを活用した検証手法からは、有効性の高い方法を見出す「実践的な知識」を得ることができ、今後の業務に大いに役立つと考えています。 アンケート改善のヒントは? 顧客アンケートを実施する際には、回答率向上のためにA/Bテストを導入し、仮説を立てながら改善点を洗い出すプロセスを試してみたいと思います。具体的には、EDMやイベント等を活用する方法の有効性を検証し、アンケート収集方法の効率化および精度向上に繋げることで、実務に直結する解決策を見出すことができると期待しています。

クリティカルシンキング入門

業務に活かす!伝わる文章力

文章作成の基礎は? ナノ単科を受講する中で、文章作成の基礎から応用まで体系的に学ぶことができました。特に、論理的な構成や情報の整理方法について具体的な手法を知ることができ、実務でのレポート作成や報告書の作成に大いに役立っています。 報告で何が変わる? 学んだ内容は、業務報告や上司へのメール作成において、単に数字や事実を列挙するだけでなく、その背景や要因を整理して伝えることにつながりました。具体的には、情報の根拠を明確にし、読み手が理解しやすい順序で提示する工夫を実践しています。また、表現のバリエーションを意識することで、同じ内容でも説得力を持たせる文章に仕上げることができました。 今後の活用法は? これからも業務におけるコミュニケーションの質を高めるため、ナノ単科で学んだ知識を活用していきたいと考えています。

クリティカルシンキング入門

ライブ授業で得た問いの術

問いのマトリックスは? ライブ授業で教わった問いのマトリックスが非常に印象に残りました。左右に原因と打ち手、上下に抽象的なものと具体的なものが配置されており、とても分かりやすい構造です。良い問いを考えるためには、①状況を見る、②原因に着目する、③問いを残すという視点が重要だと理解しました。この学びは大変意義深いものでした。 組織と業務の課題は? 具体的な行動①として、現状、自社の組織構成と業務フローの適合性に課題を感じています。まずは状況を整理し、筋の通った問いの検討から取り組んでいきたいと考えています。 システム入替えの負荷は? 具体的な行動②では、システムの入れ替えが予定されているため、社員にできるだけ負荷がかからない方法を模索しています。こちらも、まずは現状の整理と問いの組み立てから進めていく予定です。

クリティカルシンキング入門

客観視で育む最適判断力

直感と客観視とは? 改めて、物事を客観的に捉える重要性を実感しました。自分の感覚に頼るだけでは思考の癖に陥りやすく、解くべき課題の本質を見誤るリスクがあると感じました。そのため、直感や経験だけではなく、冷静な客観視を意識することが重要です。 限られた情報でどう考える? また、正解が用意されていない問いに対して、限られた情報から最適解を導き出す思考力と、それに基づく意思決定力は、AIが普及した現代において非常に求められるスキルだと考えています。 意思決定の秘訣は何か? 普段の業務では、自らイシューを設定し、限られた情報の中で果断に意思決定を行う経験を積んでいきたいと思います。その際、どのような理由で判断を下したのかを、他者に明確に伝えられるよう、主張と根拠をセットで整理しておくことの必要性を改めて認識しました。

データ・アナリティクス入門

小さな気づきが大きな成長を生む

どう原因を見極める? 課題解決においては、まず対象の業務プロセスを細分化し、どの段階が問題の原因となっているかを明確にすることが重要です。自分の感覚だけで原因を決定するのではなく、有識者へのヒアリングなどを通じてプロセス全体を整理し、どの部分に注力するかを正しく見極める必要があります。どのプロセスを改善すれば、課題解決に大きな効果が期待できるかをしっかり検討することが求められます。 何をテストするの? また、改善案の効果を正確に判断するためには、A/Bテストの導入が有効です。改善前後の両方のパターンを同じ条件下でランダムにテストすることで、施策の効果を客観的に評価できます。さらに、システム導入のトライアルにおいては、現行システムと新システムを同時に使用することで、正確な効果測定が可能となるよう進めることが望まれます。

データ・アナリティクス入門

視点を広げる根拠の解決術

原因考察と仮説検討は? 原因を考える際、問題発生までのプロセスを洗い出し、対概念などのフレームワークを用いることで、仮説検討の視点を漏れなく広げられると感じました。また、判断基準を設けた上で重み付けを行ったり、A/Bテストを実施して検証する方法も学び、具体的な打ち手の決定に役立つと感じました。 解決アプローチはどう? 業務におけるこれまでの問題解決のアプローチは、決め打ちに偏りがあり、問題点の洗い出しの視点が狭かったことや、なぜその結論に達したのかの言語化が不足していたと痛感しました。今後は、what→where→why→howのステップに沿って原因の観点を広く整理し、データを比較しながら根拠を持って仮説を立てたいと考えています。さらに、打ち手の決定に際しては、A/Bテストをうまく活用することを試みたいと思います。

クリティカルシンキング入門

見える!MECEで課題解決のヒント

MECEとはどう考える? 今週の学びは、MECEの考え方と切り口の作り方についてでした。MECEとは、全体を定義し、もれなく重複なく切り分けることで、目的に沿った視点で事象を分解し、問題の所在を把握する手法です。 どんな切り口を使う? 具体的には、層別分解、変数分解、プロセス分解という3つの切り口が挙げられます。業務改善の課題分析に活用する際、これらの方法を組み合わせることで、従来のプロセス分解のみでは見落としがちなポイントを捉えることが可能になります。 問題解決の糸口は? 従来はプロセス分解で分析を行っていたため、問題点が多い場合にどこから手をつけるべきか迷うことがありました。しかし、まず解決すべき問いを明確にした上で、層別分解や変数分解を取り入れることで、目標に沿った形で課題を整理できると感じました。

データ・アナリティクス入門

ゼロから攻略!知識整理とデータの力

ゼロからどう始める? ケーススタディーに取り組む際、これまでのような指針がない状態でゼロから考えると、どこから手をつけたらよいのか迷ってしまうことが多いと感じました。そのため、どの状況でどの分析手法が有効なのかを再度整理し、自分の知識や経験を明確にしておくことで、このハードルを乗り越えられると考えています。 業務の効果をどう見る? また、日々の業務では求められるKPIの達成に向けたマネジメントが中心となりがちです。その中で、現在の活動が本当に目的に沿ったものであるか、またはより大きなインパクトを与える方法はないか、成功しているチームがどのような行動を取っているのかを考えるようになりました。そこで、データ分析を用いて客観的な視点からその効果を示すことで、より効果的な業務の進め方を模索していきたいと思います。
AIコーチング導線バナー

「業務 × 整理」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right