データ・アナリティクス入門

論理ツリーで磨く実践スキル

なぜ手法を再確認? 今回の学習では、問題解決のステップ(What/Where/Why/How)に沿って、各段階でどのようなアクションを取るべきかを再確認することができました。普段の業務でも同様の手法を取り入れていますが、今回の具体例を通じて現状の見直しに役立つと感じました。 適切な分解は何故? また、ロジックツリーに取り組む際、すべての要素を漏れなくダブりなく洗い出そうとするあまり、時間をかけすぎてしまう傾向があることを改めて実感しました。特に末端の階層にこだわりすぎず、適切なレベルで分解するというアドバイスは大きな気づきとなりました。 現業務の解析はどう? 現在の業務では、顧客へのサービス提供に際してコスト試算や自部署の予算計画、実績の分析を行っています。例えば、コスト試算においては提供価格、原価、販管費といった大枠から、さらに細かい費目に分解して検証していますが、構成要素をツリー状に分解するという手法は初めての体験でした。今回の学びを現業務にも活かせると考えています。 次の改善策は何? 今後は、自部署における予算計画、実績把握、コスト試算のプロセスに、ツリー状の分析手法を取り入れてみます。一度試してみて、試算の妥当性や課題の特定にどのような効果があるかを検証していきたいと思います。

データ・アナリティクス入門

論理で見つける本質のヒント

ロジックとMECEの意義は? 今回、ロジックツリーとMECEの考え方の重要性を学びました。実際の業務ではロジックツリーを使用していますが、MECEについては十分に意識できておらず、その結果、抜け漏れや重複が生じることがありました。今後は生成AIを活用し、漏れやダブりがないかを確認していきたいと考えています。 問い合わせ対応の真意は? また、ユーザーからの問い合わせに対しては、単に表面的な対応にとどまらず、ユーザーが抱えている本質的な問題をしっかりと把握することの大切さを再認識しました。たとえば、ユーザーから「椅子が壊れたから直してほしい」と依頼があった場合、単に椅子を修理するだけでなく、一体何に困っているのか(What)、どの部分が壊れているのか(Where)、なぜ壊れてしまったのか(Why)、そして今後の対策(How)についても考え、包括的に対応することが求められます。 本質追求はどうする? さらに、ロジックツリーを活用して、ユーザーが本当に必要としていることをWhatの視点で明確に考え、抜け漏れがないかを網羅的に確認する視点を持つことが重要だと感じました。思考の順序は、最初にWhat、次にWhere、そしてWhyの順に進めることを意識し、具体的かつ論理的な対応を心がけたいと思います。

データ・アナリティクス入門

データで紡ぐ成長の物語

データ整理は安心? データの切り出し方について、以前は数字が欲しいならこれといった感覚で扱っていたため、具体的に整理する作業が非常に有意義でした。成長率の求め方についても久しぶりに見直し、これまで間違った計算方法を用いていたことに気づけたのは大きな収穫です。 分布分析の効果は? 定量分析の手法として、代表値と分布に注目し、データをビジュアル化してより理解しやすくする方法を学びました。平均値が外れ値の影響を受けやすいという点に加え、単純平均、加重平均、幾何平均、中央値といった代表値や、標準偏差を用いた散らばりの把握、さらにはヒストグラムでばらつきを表現するテクニックが印象に残りました。 データ活用の秘訣は? また、ECにおける購入者分析や売上、アクセス解析にこの知識を活かせると感じました。特に、複数の商材を取り扱う場合のデータ集計処理について、最終的に求める数値や、それをどのようにビジュアル化すれば良いのかを意識したデータ分析ができるようになりました。 感覚から論拠に? これまで感覚的に行っていたデータ処理について、なぜその手法を用いるのかを説明できるようになり、自信がつきました。今後は月次のアクセス状況の説明にも、より論拠をもって提案し、販売方針や経営判断に結びつけていければと考えています。

マーケティング入門

ターゲットを捉える戦略の秘密

セグメントは正しい? セグメントについては、事前に持っていた認識が正しかったと感じています。市場評価基準(6R)の考え方を理解し、一人の中にも状況や場面によって多様な個性があることから、ターゲティングを行う際には背景やシーンを明確にする重要性を実感しました。 訴求はシンプル? ポジショニングに関しては、訴求ポイントを2つに絞えるという考え方が有効だと学びました。実際、ポジショニング後も顧客からどのように見えているかを客観的に把握し、状況の変化を常に観察する必要があると感じました。 強みは複合的? また、自社の強みを複合的に掛け合わせる可能性についても考えました。これまで紹介事業で培ったサポート力を、転職活動中の方だけでなく、前工程・後工程や転職市場以外の分野でも活かすことができないか、検討する価値があると捉えています。 誰に届ける? さらに、新ブランドを立ち上げる際の訴求ポイントの整理にも注目しました。社員それぞれが感じる自社サービスの強みを洗い出し、現状のターゲットのペルソナをより具体的に言語化することで、「誰に向けたサービスなのか」を再設定し、その上で強みのどの部分が当てはまるかを検討していきます。こうした取り組みは、SNSのショート動画などのコンテンツ作成にも応用できると考えています。

データ・アナリティクス入門

実務に活かすMECEで新視点発見

問題解決の難しさに気づく 実践演習を通じて、私は問題特定の際に表面上の情報だけを処理しがちで、問題解決のステップを踏むことが難しいと理解しました。これにより、課題を適切に提起できることが限られていることにも気づかされました。MECEやロジックツリーという言葉は知識として持っていましたが、具体的に活用したことはありませんでした。しかし、MECEはデータを重複なく、漏れなく整理する考え方で、実務でも非常に有効であると感じ、直ちに活用したいと思いました。 新視点での顧客セグメンテーション 実務において、顧客セグメンテーションを考える際、これまでは年齢、性別、居住地などの従来の基準に頼っていました。しかし、MECEの考え方を用いることで、新しい視点からセグメンテーションを検討し、より優れた分析ができる可能性を探りたいと考えています。 新手法の有効性は? 新たな顧客セグメンテーションの手法として、まず取引頻度と勤務先の業種という二つの基準を用いて分析を進めてみます。この二つでセグメンテーションを行い、既存の分析手法と比較することで、その有効性を検証したいと考えています。現時点では、取引頻度や業種に関するデータの分布を十分に把握していないため、まずはどの基準で分類を行うのか、データを確認していきたいと思います。

データ・アナリティクス入門

発見!比較で深まる学びの力

どう比較すべき? 分析とは、対象同士を比較することを意味します。重要なのは、目的に応じた適切な比較対象を選ぶことであり、その選定においてはバイアスがかかりやすい点に十分注意する必要があります。ここで大切なのは、単に目の前のものと比較するのではなく、どのようなものを比較対象とするかが鍵となることです。 テーマの真意は? また、「愛の価値」という一見難解なテーマについても、しっかりと理由付けができたおかげで学びを深めることができました。単なる難題ととらえるのではなく、根拠を持って回答できた点が大きな成果だと感じています。 業務応用はどう活かす? さらに、この分析の手法は、様々な業務に応用可能であると考えます。たとえば、売上の見込みを立てる際には、過去の実績、見積もり件数、出荷待ち製品などの相関関係を把握することで、より精度の高い予測が可能になるはずです。同様に、適切な安全在庫の設定や費用対効果の高い広告選定、さらには攻めるべき市場の選定など、さまざまな場面で活用できると期待しています。 結果のズレは何故? なお、比較分析を行った結果、うまくいかなかった事例についても知見を深めたいと考えています。たとえば、見込みが大きく外れてしまったケースなど、具体的な事例があれば今後の参考にしたいと思います。

データ・アナリティクス入門

仮説から解決へ!実践の軌跡

問題解決はどう進む? 問題解決の4ステップとして、まず「what」(問題の明確化)、次に「where」(問題個所の特定)、その後「why」(原因の分析)、そして「how」(解決策の立案)という流れで整理する方法が紹介されています。各ステップが順序立てて説明されているため、全体像を把握しやすく、実際の問題へのアプローチがより明確になります。 仮説検証はどうする? 仮説を立てる際には、複数の仮説を同時に検討し、それぞれに網羅性を持たせることがポイントとして挙げられています。また、仮説を検証するために、どの比較指標を選ぶのかを意識してデータの評価を行う大切さも感じました。 データ収集はどう考える? データを収集する際の注意点として、まず「誰に聞くか」と「どのように聞くか」を慎重に考え、比較可能なデータの収集を怠らないことが重要です。さらに、反論を排除するためにも、対立意見をも十分に考慮した情報収集が求められています。 分析計画はなぜ大切? 最後に、分析に取りかかる前に、設定した仮説を反映した分析計画表を作成する意義が強調されています。特に、経験の浅いメンバーと共に仮説の設定プロセスや必要なデータ収集、効果的な分析方法について議論することで、より深く問題解決に臨む体制を整えることが可能になります。

リーダーシップ・キャリアビジョン入門

あなたの気づきが未来を紡ぐ

振り返りはなぜ必要? リーダーは、ただ実行するだけでなく、その結果についてしっかりと振り返る責任があると感じます。実行後の学びや気付きは、次に活かすための大切な要素です。 モチベーションはなぜ変わる? モチベーションやインセンティブは一人ひとりの特性やスキル、また社会の環境によって常に変化するため、継続的なアップデートとその整合が必要です。この変化に柔軟に対応することで、個人の成長だけでなくチーム全体のパフォーマンス向上にも繋がると思います。 実行と振り返りはどうする? 実際の業務では、実行が完結して振り返りが行われないケースが少なくありません。そのため、実行と振り返りをセットで実施する習慣を取り入れ、良かった点や改善すべき点を明確に整理することが重要です。振り返りから得た気付きをもとに、自分なりのノウハウや信念を形成し、次の仕事に活かすプロセスが求められます。 課題克服のポイントは? また、自身やメンバーの課題を明確にするため、ズローの欲求の5段階説やハーズバーグの動機づけに基づくフレームワークを活用し、現状の不足点を的確に把握して改善に取り組むことが大切です。チーム内でも、定期的な振り返りと日常のコミュニケーションを通じて、互いに成長できる環境を作っていきたいと考えています。

データ・アナリティクス入門

仮説とデータが紡ぐ物語

分析の始まりはどう? データ分析は、まず解決すべき問題を明確にし、最終的な結論のイメージを持つところから始まります。すなわち、最初に仮説を立て、what、where、why、howという流れに沿って必要な情報を整理することで、分析の方向性を定めることが大切です。 データはどのように収集? 次に、必要なデータを収集します。その際、実際の数値と割合の両面から確認を行い、一方に偏らないバランスの取れたデータ把握を目指します。必要な情報が不足している場合は、自らデータを集める方法も検討すべきです。評価方法においては、あいまいな表現や中間的な回答を避けることが重要です。 図表でどう伝える? 収集したデータは、次に加工して見やすい図表などにまとめます。どのような表現方法がデータの散らばりや相関を直感的に理解させるかを判断し、情報を具体的かつ明確に提示することが求められます。 仮説はどう再検証? そして、整理されたデータをもとに、当初の仮説に沿って分析を進め、発見に結びつけます。この過程では、what、where、why、howの各側面で原因と結果を再確認し、客観的な視点で全体のストーリーを見直すことが大切です。また、既存の仮説にとらわれず、新たな価値ある仮説の構築に努めることも求められます。

データ・アナリティクス入門

四つの視点で広がる実践力

なぜ各検証が必要? 改めて、What、Where、Why、Howの各ステップとその検証内容を体系的に復習できたことに、大きな意義を感じています。どのステップも欠かすことなく実施し、各段階でしっかりと仮説検証や多角的な視点を持たないと、目的とする分析結果に至らないことを実感しました。 どうして理解が深まる? この数週間の学びを通じて、社内で活躍する優秀な上司や同僚がどのような思考のもとで発言しているのか、またその経緯がどのようなものかを少しずつ理解できるようになりました。以前は難解で理解に苦しんだ会話も、どのステップでどのような仮説のもと話が進んでいるのかを想像することで、より明瞭に捉えられるようになりました。今後は、他者の考え方を客観的に理解するだけでなく、自分自身もその思考法を基に説得力ある会話が展開できるようになりたいと思います。 どう学びを実践する? まずは講座内容の復習に取り組みたいと考えています。ライブ授業やグループワークを通してデータ分析の全体像を把握できたため、実際の利用シーンを思い描きながら再度学習することで、今後実践可能なスキルとして身につくと感じています。そして、日常生活や小さな出来事においても、仮説思考や問題解決思考を持って物事に取り組む習慣を定着させていきたいと思います。

クリティカルシンキング入門

問いの力で広がる学びの未来

問いをどう理解する? 「問いを立てる」という言葉について、普段の言い回しとは異なり、初めはピンと来なかったものの、ライブ授業の具体例を通じて理解が深まりました。YESかNOで答えられる問いを設定することで、その答えに対する論拠や分析が求められ、論理的な説明が自然と身につくと実感しています。これまでの日々の業務にも通じる部分があり、改めてその意義を認識することができました。 フレームワークの再確認は? また、これまでシステム開発の現場で漠然と使っていた思考のフレームワークが、今回の学習を通じて再確認できた点も大きな収穫です。部署内で複数のシステム開発案件のレビューを行った際に、報告内容が論理的でない場面に直面することがあり、状況を整理するためにこのフレームワークを意識的に活用できそうだと感じました。さらに、事業計画の立案や部下のサポートにも、今までの経験にとらわれない新たな視点を加える上で大いに役立ちそうです。 イシューリストをどう見る? ライブ講義で紹介されたイシューリストの作成方法も非常に印象的でした。日常業務では緊急度の高いものが優先され、本来注目すべき課題が見落とされがちですが、イシューリストを作成し定期的に見直すことで、重要な問題点を把握し、対処策を検討する体制を整えられると感じました。

アカウンティング入門

会計分析で見える企業の魅力

利益指標の本質はどこ? 営業利益は、本業から得られる利益を示す指標ですが、本業以外の要因は反映されていないため、経営全体の成功を完全には表していません。一方、経常利益は本業外の損益も加味しており、企業が経常的に利益を出せる体質かどうかを判断する上でわかりやすい指標であると感じました。最終的な利益を表す当期純利益は、特別損益や税金なども考慮されるため、企業の全体像を把握する際に役立つと理解しています。 業界構造の違いは何? また、業界ごとにP/L(損益計算書)の構造は異なります。例えば、自動車業界のように原価の割合が高い場合や、クラウドサービスのように原価が低い業界もあると知りました。製造業では原価が高い傾向にありますが、企業によっては販管費や研究開発費に大きな特色が見られるため、その違いにも興味が湧いています。 事業価値は一致している? 同一業界内で数社のP/Lを比較し、その企業がどのような事業価値を提供しようとしているのか、またウェブサイトで公開されているビジョンや戦略と一致しているのかを考察してみたいと思います。自分でゼロから比較するのは難しい面もありますが、他者が行った業界ごとの比較記事などを参考にしながら、これまでの講座で得た知識を活かして財務諸表を読み解いていきたいと考えています。
AIコーチング導線バナー

「把握」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right