クリティカルシンキング入門

データ分析の新しい視点発見!

データ分析で新発見を得るには? データを分析する際には、さまざまな切り口から考え、実際に手を動かしてデータを加工することで、新たな発見が多くある。分解の粒度が大きい状態で導き出した結果を安易に結論としてしまうと、誤った判断を下す可能性がある。そのため、分解を行う前に全体を把握し、定義することが重要だ。 仮説をどう裏付ける? これまでデータを分解して分析することは多々あったが、全体を把握し、定義したうえでMECE(Mutually Exclusive, Collectively Exhaustive)な切り口で分解できていたかというと、必ずしもそうではなかった。また、自分が立てた仮説を裏付けることを目的として、恣意的に切り口を設定していたこともあった。まずは、オフィス内のスタッフごとの工数負担について、全体を把握したうえで分析したいと思う。 先入観を排除する方法は? 普段、自分が抱いているイメージという先入観をまず取り除き、工数実績などの数値から導かれた結果にフォーカスする。そのうえで、全体像を把握し、MECEを意識して切り口を決定する。具体的には、全員の残業時間も含めた総労働時間をもとに、業務ごとの工数を比率として算出してみたい。

クリティカルシンキング入門

伝わる!わかりやすい資料作成術

グラフの使い方は? わかりやすい資料を作成するために気を付けるべきポイントを学びました。具体的には、グラフを使用する際は、文章の流れと同じ順番で配置し、伝えたいメッセージに合わせたグラフを選ぶことが大切だと感じました。また、テキストメッセージの場合も、フォントや色、アイコンの選び方が持つ印象を損なわないようにする必要があると理解しました。 文章作成の極意は? さらに、良い文章を作るには目的をしっかり把握し、読み手を意識した工夫が必要であることも学びました。資料作成と文章作成はどちらも、受け手に負担をかけずに情報を伝えることを目指すべきだと思います。 社内案内文の工夫は? この学びは、社内への案内文作成にも活かせると考えています。今まであまり意識していなかったアイキャッチの工夫を取り入れることで、従業員に読み進めてもらえる文章作りに挑戦したいと思います。 改善行動を促す方法は? また、改善を促す内容については、実績をもとにしたスライド資料を作成するなど、具体的な数値や根拠を示すことで状況を共有し、改善行動を促す資料と案内文を合わせて展開していく予定です。毎月の案内文も、アイキャッチを意識した内容に改善していきたいと考えています。

マーケティング入門

受講生が語る業務改革の秘密

イノベーション普及の理由は? 今回の学びでは、イノベーションが普及するための要因について理解を深めました。具体的には、従来のアイデアや技術に対する比較優位性、生活環境に無理なく馴染む適合性、利用者にとって理解しやすいわかりやすさが重要であると感じました。また、実際に試すことができる試用可能性や、採用されていることが周囲に明示される可視性も大きな要因だと実感しました。 バックオフィス業務効率は? 現在の主たる業務は、バックオフィス業務の効率化と品質向上に注力しています。実際、実店舗や間接部門との連携においては、全社的な業務変革に対する抵抗感がある中、わかりやすさや適合性、試用可能性を意識したコミュニケーションが、業務の円滑な遂行に直結していると感じています。 部署移管の説明は? また、既存業務を自部署へ移管する際には、新しい書式や使用方法についての説明が多く求められます。決まりごとや全社的な流れを伝えるだけでなく、相手が理解し納得するまで丁寧に説明責任を果たすことが、信頼関係の構築に不可欠だと再認識しました。 顧客志向はどうする? 今後は、顧客志向の目線を重視し、相手が把握しやすい資料作成や説明会の実施に努めたいと考えています。

データ・アナリティクス入門

仮説で切り拓く未来への一歩

問題点は何か? 問題解決に向けた仮説の考え方として、まずは「問題は何か」「どこに問題があるのか」「なぜ問題が発生しているのか」「その問題をどうすべきなのか」という点を整理することが重要です。これにより、現状の課題を明確に把握し、解決策を具体的に検討するための土台が作られます。 仮説の意義は? さらに、仮説を立てる意義として、検証マインドの向上、説得力の増強、問題意識の高さ、そして問題解決へのスピードアップが挙げられます。仮説をもとに行動することで、より迅速かつ正確な対策が講じられるため、業績の結果報告を早期に行うことにもつながります。 仮説の使い分けは? また、仮説には「結論の仮説」と「問題解決の仮説」が存在し、正しく使い分けることで、思考の精度が向上するだけでなく、具体的な改善策を導き出すことが可能になります。これまで漠然と問題に取り組んできた経験を振り返り、より効果的な仮説の立て方や、仮説を絞り込む過程について学ぶ必要性を強く感じました。 実務でどう活かす? 今後は、仮説の立て方やその検証プロセスをより深く学び、実務においてスピーディかつ精度の高い成果を生み出すための知識と技術を身につけたいと考えています。

データ・アナリティクス入門

仮説と検証で切り拓く成長

問題発見はどう進める? 問題の原因を探るため、まずプロセスごとにアプローチする手法を学びました。その中で、A/Bテストを活用し、仮説を立てた上で実際に検証を重ねる方法が効果的であると理解できました。また、総合演習を通して、これまでの学習内容を振り返り、自分の知識を整理する貴重な機会となりました。 仮説検証は効果的? データ分析においては、目的を明確にし、分析に入る前に仮説をもつことの重要性を再認識しました。分析プロセスを着実に進めるとともに、効果的な切り口でデータを把握することが求められると感じています。取り組んでいるサービスのユーザ活用場面を拡充するためには、利用シーンをプロセスに分解し、それぞれを検証した上で改善策を策定することが必要です。 分析の進め方は? 具体的には、各プロセスに対して適切なデータを条件を揃えて抽出し、抜け漏れなく検証を進めることが求められます。改善策を検討する際には、複数の選択肢を根拠に基づいて検討し、基準を設けることで効果的な施策に絞り込むことが重要です。また、分析作業は複数のメンバーで進めるため、作業開始前に目的や意味合いを共有し、各メンバーが同じ認識で取り組むことにも留意すべきだと実感しました。

クリティカルシンキング入門

多角的視点で解決策を見つける方法

クリティカルシンキングの重要性とは? クリティカルシンキングでは、多角的な視点で問題を見つけ出し、イシューを明確化することが重要です。次に、数字で分解し、グラフなどを用いて視覚化することで理解しやすくなります。また、ピラミッドストラクチャーを使って適切に言語化することも大切だと感じました。 集客や求人における応用法は? 以前にも書きましたが、集客や求人に関する問題提起や、スタッフに技術や会社の思いを伝える際にクリティカルシンキングは効果的だと思います。主観的に考えるのではなく、異なる立場や切り口から問題を見ることで、冷静な判断ができるようになります。 経営と求人改善のポイント 例えば、集客では経営コストとのバランスを考え、ターゲット顧客が普段どの予約ツールや媒体を利用しているかを把握し、その改善方向を決めて運用します。求人でも同様に、媒体を把握し運用することが重要です。また、顧客や求職者に対して主観的なメリットだけでなく、他の視点から見たメリットやサービスを考え、提供することが求められます。 実施施策の効果測定は? さらに、実施した施策がどのように数字に現れているかを把握し、それを基に改善策を出して実行していきます。

データ・アナリティクス入門

問題解決の4ステップで見える未来

問題解決の切っ掛けは? 問題解決の4ステップを意識して取り組むことで、整理して分析できることが理解できました。普段、無意識に考えると、思考が散漫になり、思うような成果やアイデアが得られなくなることを実感しています。特に、「What(何が課題か)」をしっかり意識することで、その後の「Where(どこに問題があるか)」の分析が効果的になると感じ、今後もこの点を大切にしていきたいと思います。 次の対策はどうする? また、次の打ち手を検討する際には、あるべき姿(目標数)と現状(実績)を比較しながら、問題解決の4ステップを具体的に適用し、適切な対策を講じたいと考えています。これまでにも課題を見つけ対策を実施してきたものの、今後はさらに精緻な対策が立てられるよう努めたいと思います。 フレームワーク活用は? 次週からは、フレームワークの考え方を意識し、以下のステップを取り入れていきます。 ① 現状の数字を把握する ② MECEやロジックツリーを活用して整理する ③ What(何が課題か)を明確にする ④ Where(どこに問題があるか)を検討する ⑤ Why(なぜ起きているか)を分析する ⑥ How(どうするか)を具体化する

データ・アナリティクス入門

MECEで切り拓く!新たな論理学習

理想と現状の違いは? 問題解決では、まず理想の状態と現状のギャップを定量的に把握することが重要だと再認識しました。現状を正常な状態に戻す対策と、ありたい未来の実現に向けた解決策の2つの視点が必要であることを確認しました。 ロジックとMECEはどう? 今回の学習でロジックツリーとMECEの考え方について改めて学ぶ機会を得ました。これまで自己流になっていたロジックツリーを正しく再理解できたのは大変有意義でした。また、MECEの手法により、漏れや重複を防ぐことの大切さを実感しました。普段の業務では口頭だけで場合分けを行い、チーム内に認識のズレが生じることもあるため、今後はロジックツリーを活用し視覚的に共有するよう努めたいと思います。 分析の壁はどう? 一方、日常の業務においては、数字を追いかけ原因を探る分析作業が少ないため、新たに異動してくるメンバーが「分析」という言葉に戸惑うケースも見受けられます。演習問題の形式では対処できても、実際の業務課題にこの手法を効果的に結びつけるのは難しいかもしれません。そのため、全体像を把握しながら論理的思考を実践し、可能な限り定量化して原因を追究する問題解決のプロセスを指導していく必要性を感じました。

リーダーシップ・キャリアビジョン入門

エンパワメントで広がる仕事の余裕

エンパワメントの意味は? エンパワメントという言葉を初めて知りました。自分に余裕を持つことは非常に難しいですが、日頃から意識的に余裕を保って行動しているため、今回の内容には納得できる部分がありました。一方、目標設定においては6W1Hの観点を踏まえると形式的になりがちですが、相手に合わせて柔軟に対応することが重要だと感じました。 どのように任せる? エンパワメントの実践にあたっては、まず業務を任せる前に、対象者の状況や周囲の環境について十分に把握することが大切だと考えました。その上で、どのようにエンパワメントを進めるか自分なりに計画し、メンバーにもその計画に基づいて動いてもらう形が理想です。現在の業務でも、知識や経験に差があるメンバー同士で助け合いながら進めることで、一人では難しい課題もチームとして解決し、その学びを個々に活かせるよう努めています。 目標連動のコツは? また、経営層から示される目標を部や課単位でさらに細分化すると、全員の目標が一致するとは限りません。自分は、まずメンバーの視点で目標を考え、その上で課の目標にどのように連動させるかを検討する方法を半分ほど取り入れています。皆さんの実践されている方法もぜひ伺いたいです。

データ・アナリティクス入門

データ分析の魅力に触れる旅

なぜ目的を決めるのか? 「分析とは比較なり」という言葉が分析の基本を表しています。まず、比較を行うための目的をしっかりと決定し、その目的に合った適切な比較対象を選ぶことが重要です。そして、得られた比較結果をどのように視覚化・言語化して伝えるかも、分析の重要な要素です。これらが全体的に連携し、一つの体系としてまとまっていることで、分析は効果的に行われます。各ステップで適切な判断を行うことにより、データ分析は精度を上げることができます。 有効なデータの活用法とは? プロジェクトの進捗状況の把握や遅れの可視化と原因分析、製品の製造データの分析、それを基にした工程改善案の提案、さらに最終製品の性能・品質データの分析とそのトレンドの原因の把握など、それぞれの場面で明確な目的と最終的な活用イメージを持って分析を行うことが重要です。これによって、効果的なデータ分析の結果を示すことができるでしょう。 データ収集から始めるには? 特に最終製品の性能・品質データの分析には豊富なデータがあり、因子もある程度特定されています。自らがデータを入手しやすい立場にあるため、早速データを集めて分析を進めていこうと思います。まずはデータの収集から始めてみます。

クリティカルシンキング入門

切り口が導く成長のヒント

本質に迫る方法は? 分解を行うことで、新たな気付きや発見につながると感じています。全体像を把握した上で、MECEの原則に沿いながら、目的別、変数別、プロセス別などさまざまな切り口で分類してみると、物事の本質に迫ることができるのです。 切り口の工夫は? たとえ思うような気付きが得られなくても、それは失敗ではなく、「この切り口ではうまくいかなかった」という気付きにつながります。こうした試行錯誤を積み重ねることで、より効果的な分解方法を見つけ出すことができると考えています。 戦略はどう立てる? 自分の業務においては、売上向上を実現するために、どの顧客にどのようなメッセージを届けるかという視点で戦略を立てています。また、競合他社の動向を分析する際にも、地域特性や顧客の属性、背景など、複数の角度からデータを整理し、より具体的な傾向を把握するよう努めています。 多角的分析は? 常に物事を多角的な視点で分解し、MECEを意識して取り組むことで、さまざまな側面から物事を見る力が養われると実感しています。データを得た際には、失敗を恐れずに多様な切り口から分析を行い、そのプロセスの中で常に新たな気付きや成長につなげていきたいと思います。

データ・アナリティクス入門

実践!比較で開く分析の扉

分析本質はどう捉える? 「分析の本質は比較」というテーマから、これまで漠然と捉えていた「分析」が、実は「比較」を前提として成り立っていることを再認識しました。比較対象が存在しなければ、意味のある分析は行えないという考え方に気づかされました。 課題整理はできてる? 現状の課題として、収集したデータがそのままに放置され、分析に必要な比較対象が適切に選定されていない点、そして分析の目的が明確になっていない点が挙げられます。これらの課題を意識し、今後の業務改善に活かしていきたいと思います。 数値の変化はどうなってる? コミュニティ運営では、入会や退会の集計を実施していますが、リソースの問題から、十分な分析には至っていませんでした。しかし、年単位の集計により、昨年や一昨年と比較してどのような数値になっているのか、またその数値に影響している要因は何かといった点を把握できると実感しています。 改善策は何だろう? 今後は、分析の目的を明確にし、必要なデータ収集に努めるとともに、入会時および退会時のアンケート項目の見直しを実施します。そして、毎月の施策と入退会の関連性を紐付けることで、より実践的な分析を展開していきたいと考えています。

「把握」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right