マーケティング入門

顧客の真のニーズに目を向けて

顧客の真のニーズとは? 「顧客の真のニーズは本人さえも気づいていないことがある」という言葉が特に印象に残りました。自分自身を振り返ってみても、日常生活で感じる不便さや困りごとは多くありますが、それを即座に言葉にするのは意外と難しいと感じます。この講義を通じて、顧客ニーズの深掘りの重要性が理解できました。 日常に潜む商品価値は? 私は食品の容器を調達する部門に属しているため、顧客の困りごとに敏感に反応してニーズを捉えることができれば、さらに顧客に寄り添った資材の社内提案や調達が可能になると感じています。そのためには、日常的に身の回りの商品に対して「どう感じたのか」に敏感である必要があると考えました。 自社と他社製品の理解を深める方法 まずは自社製品を徹底的に理解し、私自身やお客様が「不便」や「イマイチ」と感じた点を深く掘り下げて、それに対してどう対応すれば良くなるのかを考えることから始めたいと思います。また、他社製品についても同様に考え、ヒットしている商品に対して「どうしてこの商品は売れたのだろう」と考えるようにすることが重要だと感じました。

マーケティング入門

顧客志向の新たな価値創造に挑戦

顧客志向の重要性を再確認 マーケティングにおいては、何よりも顧客志向が重要であることを改めて学びました。「売れる仕組みを作ること」がマーケティングの定義とされていますが、その根底にあるのは顧客の存在です。すなわち、自社の商品を単に知ってもらうだけでなく、その魅力を感じてもらうことが重要です。 社員満足度向上の方法とは? 自社のサービスを将来的に営業や外部収益に結びつけるために活用するのはもちろんのこと、顧客を社内外のメンバーやステークホルダー全員と捉えることによって、課やオフィスの従業員満足度を高めることにもつながるのではないかと考えます。 全ての人を顧客と捉える意味 自分に関わるすべての人を「顧客」として捉え、その方々に満足していただくためには何が必要かを考えることが大切です。そのためには、その人たちのニーズを正しく把握し、偏った考えに陥らないよう、広い視野や様々な視点、そして高い視座を持って物事を捉えることを意識したいと思います。そして、そのニーズに応える、あるいはそれを上回るサービスを提供できるスキルを磨くことを心掛けたいです。

データ・アナリティクス入門

自ら創る仮説が未来を拓く

仮説の前提って何? 起こった問題や今後の課題に対して、仮説を立てること自体はよく行っていましたが、自分で仮説の前提を作るという点については、あまり意識していなかったため、とても勉強になりました。 どうして巻き込む? また、コーチング手法においても、相手に仮説を立ててもらうことを意識することで、チーム全体を巻き込みやすくなると感じました。 なぜ多角で考える? 具体的には、プランニング時や、問題が発生したプロセスを振り返る際、また未来に具体性を持たせる必要があるときや、チームに各自の未来を考えてもらう場合など、幅広い場面で役立つと実感しています。さらに、一つの仮説だけでなく、異なる視点からの仮説を立てることも重要だと思います。 先が見える計画は? ビジネスプランの策定においては、チームに問いかける際に仮説を促す話し方を意識したり、あえて自分で仮説の前提を設定することで、未来のプランを頭に落とし込みやすくなります。さらに、予想外の事態が起こった場合でも、そのロジックを考え直し、未来に活かすことを意識するようになりました。

データ・アナリティクス入門

柔軟な仮説が未来を拓く

初期仮説の危険性は? 仮説は初めから決めつけず、幅広い視点で持つことが大切です。あらかじめ仮説を立て、それに基づいて検証するため、もし初期の仮説に誤りがあれば、その後の工程にも大きな影響が出る可能性があります。 計画的データ収集は? また、仮説を検証する際には、必要なデータを計画的に収集することが求められます。必ずしも全ての情報が揃っているとは限らないため、誰にどのように情報を収集するか、目的に沿って進める必要があります。 売上データで何発見? 日々の業務で売上データを見る中で、発生した事象に対してまずは幅広く仮説を出すことが有効だと感じました。これまで漠然とした感覚で仮説の検証に取り組んでいたため、今後はより意識的に取り組むことが必要だと思います。 周囲の意見は頼も? 仮説を立てる際は、自分一人で考えるのではなく、周囲のメンバーからの意見も取り入れ、網羅性を高めるよう努めます。過去の経験や先入観をなるべく排除し、フラットな視点で物事を俯瞰することを心がけるとともに、仮説検証の目的を踏まえて最適なデータ収集方法を選択していきます。

クリティカルシンキング入門

データ活用で見えた新たな視点と工夫

データ加工法をどう活用する? データの加工法について学びました。与えられたデータをそのまま使うのではなく、自分で項目を追加することを意識することが重要です。例えば、絶対値や相対値(比率)を追加することで、データにひと手間加えることができます。数字をグラフにすることも非常に効果的です。また、データを分解する際には、複数の切り口で考えることで異なる見解が得られることがあります。 人件費分析で何を検証する? 現在、人件費分析を行っているため、今回学んだ切り口や加工法を実践しています。具体的には、時間外労働時間の妥当性を検証するために、データを性別、既婚未婚、年齢(若手かベテランか)、部門ごとに切り分けて情報を抽出し、グラフで可視化します。 PowerBIでどう可視化する? 人事データを入手したら、比率や不足している情報を追加し、勤怠情報としての表を作成します。このデータを可視化するためにPowerBIを使用し、グラフ化します。さらに、散布図を用いて時間外労働時間と相関のある事柄を確認し、そのデータを参考に実際に関連性があるかどうかを調査します。

データ・アナリティクス入門

変化を捉え、採用戦略の新しい視点を獲得

「分析は比較なり」とは? 「分析は比較なり」という言葉が強く印象に残りました。これまで、分析を行う際にはひとつの情報やデータから何かを導き出そうとすることに注力しがちでした。しかし、適切な対象と比較を行うことが重要であることに改めて気づかされました。データ加工が目的化し、肝心な分析がおろそかにならないよう、「何のための分析なのか」を明確にすることが大切だと学びました。 採用戦略にデータ分析をどう活かす? また、この知見は顧客企業の採用戦略を考える際にも活用できると感じました。顧客が抱える採用課題を解決するためには、現状データ(求職者の動向や志向性など)をもとにボトルネックを分析する必要があります。目標と現状の差を正確に把握するために、今回の学びを活かしてデータ分析を行いたいです。 自分なりの仮説が鍵? さらに、顧客の課題に対して自分なりの仮説を立てること、分析の目的を明確にすることを意識していきたいです。採用市場は日々変化していますが、その変化を「仕方がないこと」と捉えるのではなく、変化の原因や市場の動きを常に考えていくことが重要です。

クリティカルシンキング入門

学びを深める!未来のための思考法

知識だけでは足りない? ライブ授業の録画を見て、改めて学びが深まったと感じました。特に最後に先生が言った、「知識を得るだけでは駄目で、自分の頭で考えなければ身につかない。とはいえ、学びを止めてしまうと独断に陥る」という言葉が印象的でした。忙しさを理由に学ぶ機会を持たなければ、自分の経験だけでしか考えられなくなるのではないかと、少し不安を感じました。 本当の学びは何? 改めて学ぶことの重要性を考える機会となりました。 問いは何で始める? 課題の改善策を考える際には、まず問いを立て、問いを忘れないように広い視野を持って検討することが大切だと考えます。対象によって検討内容は変わるかもしれませんが、問いや軸を忘れずに思考することが重要です。 チーム方針はどう? 来年度のチームの基本方針を検討しています。再来年度の変革に向けて、何を変え、何を変えないかを精査する必要があります。よりモチベーション高く取り組めるよう、目標設定や教育機会(研修など)についても今までのやり方を踏襲するだけでなく、広い視野で多角的に検討していきたいと考えています。

アカウンティング入門

財務諸表の多面性を探る旅

基本と実践の関係は? 財務諸表について学ぶ中で、新鮮に感じたのは、その内容が一方で教科書的な基本を持ちながら、ケースバイケースでの解釈が求められる点です。これまでは決まったルールを覚えることが主だったように思いますが、財務諸表を深く理解し、その意味を自分自身で考えて最適な解釈を導き出すことが学びとなりました。 どこに配置すべき? 具体的には、各勘定科目をB/S(貸借対照表)やP/L(損益計算書)のどこに配置するのか、その理由を常に考えるようにしています。また、財務諸表の構造と自社事業や市場との共通点を意識して関連性を探ることも大切です。さらに、事業を顧客、提供する価値、価値の提供方法、資源という観点からも捉えてみたいと思っています。 戦略はどう組み立て? 決算が近づく中で、社内で目標利益を達成するためにどのような戦略が立てられているかを、財務諸表の視点から理解しようとしています。私の部署は支出を伴う部門ですが、コストセンターとしての役割とプロフィットセンターとしての立場を意識し、業績への影響を考えていきたいと考えています。

データ・アナリティクス入門

問題解決力を高め、シナリオ実践へ挑戦

問題解決のプロセスとは? 問題解決のプロセス、What、Where、Why、Howについて学びました。私は前職でQC的な問題解決を学び、問題やボトルネックの特定、「なぜなぜ分析」、計画、アクションのような手法で考える癖があり、今回学んだ内容と似ている部分が多いと感じました。しかし、元の思考フレームワークに戻りがちな自分を再認識しました。 フラストレーションを解消するには? データ分析や見える化は行っているものの、仮説の検証や具体的なアクションを自発的に行っていない部署の現状にフラストレーションを感じています。おそらく、具体的なアクション(How)を実行できないと諦めているために、根本原因(Why)の追求が疎かになっているのではないかと考えています。 新たなシナリオ作成と実践法 今回学んだことを基に、「How」を実行できると仮定してシナリオを作成し、実践してみたいと思います。また、一連のプロセスを効率的に進められるよう、自身をトレーニングし、さらにBIツールやPythonを活用して知見やスピードを向上させる手法を学びたいと考えています。

データ・アナリティクス入門

小さな疑問から大きな発見へ

何故課題意識は必要? 分析の目的や課題意識を明確にすることで、日常の業務だけでなく、普段目にする分析データについても「なぜ?」と考える習慣が身につきました。例えば、ニュース記事で医師不足が取り上げられる場合、その背後にある分析の意図や解決すべき課題を自分なりに考察するきっかけとなりました。 施策評価はどう? また、業務で複数の施策を企画・実行する中で、効果を評価するための分析が重要だと感じています。中長期的な戦略の実行に際し、連続性のある施策を実施するためにも、小さな施策のブラッシュアップを繰り返す必要があると考えています。たとえば、アプリへのログインプロセスを細かく分解し、特に初回ログイン率の向上に向けた分析を進めています。 情報取得は万全? さらに、戦略立案の段階から必要な情報やデータが適切に取得できているかを精査し、取得できていないデータにはタグ付けなどの対応を実施して、常に分析が可能な状態を作り上げています。同じ条件で定期的にログの確認やレポート作成を行う仕組みを整備することで、継続的な定点観測が可能になりました。

データ・アナリティクス入門

データ分析で成果を上げるコツは?

要因分析を効果的に進めるには? 要因分析の際には、プロセスを細かく分解して考えることが重要です。解決策を選ぶ際には、判断基準を設けることが必要で、例えばコストやスピードを基準に評価を行うと良いでしょう。 A/Bテストの活用法とは? 方法の効果を確かめる際には、A/Bテストという手法が有用です。A/Bテストでは、可能な限り条件を揃えて比較実験を行うことが大切です。要因分析時には、できるだけ細分化を行うことが求められます。すべての状況がわからない中でも、仮説を立てて細分化を試みると良いでしょう。 解決策選びの優先順位はどう決める? 解決策の選択においては、判断基準や優先順位を整理することが重要です。効率が良い方法やスピードを基準として評価することが望ましいです。報告資料を作成する際は、自分の中でステップを細分化して理解し、その上で優先順位を付けて表現することが大切です。 条件を揃えるポイントは? 判断基準は常に上司と擦り合わせながら進めるべきです。また、比較を行う際は、可能な限り条件を揃えることを意識すると良い結果が得られます。

クリティカルシンキング入門

問題解決に向けた視点の広げ方を学ぶ旅

問題をどう分解する? 解決したい問題を分解するためには、主観的な視点だけでは全体を把握することは難しいと感じています。特に対人関係の問題に関しては、自分の視点だけでなく、相手や第三者からの視点も考慮する必要があります。人は自分の考え方に偏りがちであり、考えやすい方向から物事を考える傾向があります。 提案の裏付けはどう探す? 現時点では、問題に対して効果的な提案をするのは難しいと考えていますが、相手や第三者の視点を意識し、広い視座と視野を持ってやや俯瞰的に見ることで、予想外の提案ができる可能性があります。しかし、その提案を裏付ける根拠の探し方がまだわかりません。 第三者の視点をどう養う? 利害関係がないと仮定した場合、どのような案が考えられるかを大量に書き出し、第三者の視点を養う練習をしてみようと思います。また、共通の問題について職場の同僚の意見を聞き、その内容を記録し、その方の考え方の偏りを見つけ出し、どの視点から考えているのかを分析してみることにします。それによって、自分自身も異なる視点を持ち出せるか試してみたいと考えています。

「自分 × 考える」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right