クリティカルシンキング入門

思考を深める問いの力

問いの意義は何? 問いの形を用いる理由は、人間の特性として問いかけられることで頭が活発に働くためです。ただ情報を与えられるだけでは考えず、課題や疑問にも気づかないことがあります。そのため、自分の思考を整理する際には「問い」を優先して考えるべきです。特にメンバーに課題を意識してもらうために問いを立てることは効果的です。 メタ認知を鍛えるには? メタ認知を鍛えるのも重要です。これは主観を客観に変える力を持つことで達成できます。異なる業種や職種で離れた位置にいる人と深く意見交換をすることで、このメタ認知能力を向上させることができます。この能力は、上司や他部署の視点を取り入れ、多角的に物事を捉えるために活用できます。 業務改善の手法は? 具体的な業務改善の場面では、問いを立ててピラミッドストラクチャーを使用し、漏れがないかを確認します。改善が成功すれば、その問いが解決されたかを振り返ることも重要です。また、仮説を立て、それに対する上司や異なる意見を受け入れ、修正しながら想定を広げていくことが求められます。これは日常業務だけでなく、他の会社の方との深い意見交換の場でも活かせます。マネジメント手法や思考方法などについての議論を通じて、自分の視野を広げることができます。

クリティカルシンキング入門

イシューを解決する力を磨く旅

イシュー解決はどう可能? 「イシュー、つまり今解決すべき問題を特定し、それを解決する方法を多角的に探ることが重要だと改めて気付きました。その時々に適したイシューを設定することが、仕事を進める上で特に大切です。観光業を題材にしたケーススタディを通じて、データを分析し、課題を把握して解決策をイメージする力を養うことができました。 チームで何すべき? 仕事の場面でもイシューを最初に特定してから解決策を考える、という手順を意識したいものです。チームで仕事をしていると、つい思いついた解決策に飛びついてしまうことがありますが、一度立ち止まりチーム全体でイシューを正確に把握し、それから解決策を考えて行動するようにしたいと思います。 データ分析で分かる? データ分析によって課題を把握し解決策を立てる作業は、POSデータの分析などにも役立ちます。グラフ化やデータの分解などの手法を積極的に活用していきたいです。 チーム会議は有効? 自分のチームでも、解決すべき問題を明確にするためのミーティングを少なくとも週に一度以上行い、チーム全体で方針を共有することを心がけています。POSデータを分析し、わかりやすくまとめることで、メンバー全員が理解しやすくなるよう努めています。

クリティカルシンキング入門

分解でひらける!業務改善の秘訣

分解の意義は? 物事を分解する重要性について学び、状況の解像度が上がり、どこに問題が潜んでいるかが見えやすくなることを実感しました。問題解決にあたり、全体をそのまま捉えるのではなく、各部分に分けて考えることで、より明確な対策が立てられると感じました。 データ分類は何で? 特に、データを仮説をもって分類し、どの切り口で分ければ自分が知りたい情報が明確になるのかを考えるプロセスが印象的でした。層別分解、変数分解、プロセス分解といった具体的な手法を学ぶことで、実際の業務においても、売上やクライアント提案、SNSなどのデジタルメディア戦略に応用できると感じました。 どの対策が有効? 実際の事例として、例えば自分や担当媒体の売上分析において、売上構成を細分化して傾向をつかむと、具体的な対策案をいくつも立てられることを学びました。また、クライアントへの提案では、ありたい姿を数字で設定し、その後、どの変数が大きな影響を及ぼしているかを分析することで、より説得力のあるプランが構築できると実感しました。 実践への自信は? 今回の学びは、単なる理論にとどまらず、自社メディアの成長や日々の業務改善にも直結する方法論であり、今後の実践に向けた大きな自信につながりました。

クリティカルシンキング入門

思考のクセを超えて広がる視野

無意識の制限は何? 「無意識に思考を制限させること」が心に響きました。講義で自分の思考が無意識に制限されていると認識したのですが、日常生活でも同様に感じることがありました。まずは自分の思考のクセを認識し、それが客観的に見れているかを繰り返しチェックすることの重要性を理解しました。 会議で何を掘り下げ? 社内外のミーティングでは、課題解決型の会議の中で問題や課題の深掘りに活用できると思いました。客観的かつ多角的視点で事象に向かうように心掛けたいと思います。また、上司や同僚との会話では、考える準備ができないまま話すことがあるため、目的を意識し、思考に偏りがないよう理論的に筋立てて説明することを目指します。そして、相手の考えを注意深く聞く姿勢を持ちたいです。 他者の意見はどう? 他者の意見を取り入れることは、自分にない思考を養い、客観的かつ多角的な視点を広げる助けになります。会議や会話の後には、自分の発言が客観的であったか、偏りがなかったかを振り返るようにし、必要に応じて他者からフィードバックを受けることも大切です。常に疑問を持つことで、情報や他者の言葉を鵜呑みにせず、客観的に問いかけながら本当にそれで良いのか、目的に合っているのかを考えていきたいと思います。

データ・アナリティクス入門

最適な判断基準を見つけるヒントとABテストの活用法

判断基準の選定に迷う時は? 業務において、プロセスごとに整理して効果を考えることは普段から行っているが、最適な案を選ぶための判断基準については意識が足りていなかったことに気づいた。判断基準の選定に迷うことが多かったが、今後は意識的に取り組みたい。また、思考を広げることは自分一人では難しいことがあると実感している。これまで、ABテストを意識して使ったことがなかったので、何か2つ以上のものの効果を検証したいときには、これを思い出したい。 広告提案時の改善策は? 広告提案時には、これまでの「広告を試してみないか」という提案方法を見直し、「効果がある広告を検証してみないか」と伝えることで改善が図れると思った。広告1種類のみで出稿が停止されるリスクも防ぐことができるだろう。 プロセスの解像度を上げるには? さらに、プロセスを意識して考えることは、現在取り組んでいる範囲だけでなく、自身の営業計画などにおいても有効な切り口となる。実例として、広告提案時に2つの効果があると考えられる施策を提案する際は、ABテストでの実施を打診してみることを考えたい。また、営業計画を立案する際には、プロセスの解像度を上げることが重要であり、そのために上長と壁打ちをすることを実践したい。

データ・アナリティクス入門

ロジカル思考で未来を創る

仮説を深掘りするには? 視野を広げて仮説を考えるために、3Cや4P、SWOT、5W1Hなどのフレームワークを活用するという視点は、自分にとって盲点でした。普段は頭の中で拡散的に物事を捉えがちですが、MECEに沿った論理的な整理ができるこれらの型を使うことで、抜け落としていた観点を補うことができると実感しました。 データの活用法は? また、データの取得方法についても、新たにアンケートなどで新しいデータを取ることに注力しがちでしたが、既存のデータを活用する手段もすぐに実践可能であることに気づかされました。特に、パートナーが所持しているデータに着目するという考えは、近くにある資源を有効に利用する良いきっかけとなりました。私自身、所属するグループ全体でリソースを活用することの重要性を改めて認識しています。 問題解決の手順は? さらに、問題解決のステップとして「原因の特定」を意識してきた中で、WHAT→WHERE→WHY→HOWという一連の流れは、非常にわかりやすく、汎用性が高いと感じました。これまで以上に構造的な思考を促すツールとして、エクセルにフォーマット化したフレームワークをデスクトップに置き、仮説を立てるたびに都度活用していきたいと思います。

戦略思考入門

実践で磨く戦略差別化の秘訣

ターゲットはどう選ぶ? これまで、差別化を考える際に自社の強みを基準にして戦略を立ててきましたが、まずはターゲットとするクライアントを明確に定めることの重要性に気づきました。さらに、ターゲットの視点から自社が通常競合と捉える企業だけでなく、業界を問わず強豪が存在するか、その強豪と比較して優位に立てるか、また模倣されにくい施策であるかを検討する必要があると学びました。 部署の戦略はどう見直す? 会社全体では差別化できる部分があるものの、所属する部署においてはその点が十分に発揮できていないと感じています。上司が自部署の戦略を考える中で差別化案を提示しているため、これまで自分の意見を積極的に述べる機会が少なかった状況でした。そこで、自らフレームワークに沿って部署を分析し、自身の視点での差別化戦略を模索するとともに、上司の戦略も同じくフレームワークを用いて検証していくつもりです。 現状の課題は何か? 担当部署には多くの競合が存在し、自社全体の強みと比べると、部署内の強みは薄いという現状を改めて認識しました。今後は、自部署の現状を十分に分析した上で、取るべき方向性を明確にし、差別化できるポイントや今後伸ばすべき点について上司と議論していきたいと考えています。

データ・アナリティクス入門

問題解決の基本を再確認:MECEとロジックツリーの活用法

問題解決の基礎を学ぶ 今週は、問題解決の4ステップ(What→Where→Why→How)のうち、What(問題の明確化)について学びました。目的を見失わないために、あるべき姿と現状のギャップを数値や定量的に示すことが重要です。そのため、MECEを使い、漏れなく重複なく分解して考えると良いということを再認識しました。 分解の難しさをどう克服する? 過去にロジックツリーを学んだことがありますが、MECEを意識しながら何で分解すべきかを羅列するのは難しいと感じています。多くの場合、目の前の情報や限られた知識だけで分解した気になってしまうことが多いです。この課題を解決するために、最近は生成AIを活用し、プロトコルやフレームワークを使って客観的な情報を得る機会が増えています。これにより、自分でロジックツリーを使って分析しつつ、他者やAIから得られる情報を組み合わせて問題を明確化していきたいと考えています。 学びを日常でどう活かす? 毎月の会議資料や日常の部門の問題解決手段を検討する際に、この学びを活用します。ステップを踏んで考え、MECEを意識しながら、広く情報収集し、ロジックツリーを使って情報を分解することで、まずは問題を明確にすることから始めたいです。

クリティカルシンキング入門

データ分析に革命を起こす秘訣

データ分析の効果的な手法とは? データ分析を効果的に行うには、仮説を持って実際にデータを操作し、その結果を視覚化することが重要です。分析の切り口を考える際には、概念(例えばWhen、Who、Howなど)を意識して、網羅的に考える必要があります。一見、経時変化がないように見える場合でも、その内訳を確認し、本当に変化がないのかを疑ってみるべきです。 業績分析と来年度対策に必要なことは? 年度末に向けては、今年度の業績分析と来年度の計画策定が求められます。そのために、明確な切り口を持ち、業績に関する分析をさらに深化させることが大切です。これまでは一度分析を行うとそれに満足して終わってしまいがちでしたが、今後は他の視点や可能性を常に探求する姿勢を持とうと思います。 多角的視点で分析するには? 業績に関連する分析には通常ストラック図を用いますが、組織全体で集約するだけでなく、四半期別、顧客別、担当者別、契約形態別など、様々な切り口から分析を試みると、従来見えなかった特徴や課題を明確にすることができるかもしれません。また、EXCELのPivotテーブルやPivotグラフを使いこなすことで、自分の意図するデータの可視化ができるよう、積極的に手を動かしていきます。

クリティカルシンキング入門

抽象的思考を磨くための発見の旅

どうして比較する? ある受講生が、「私は具体的に考えてしまう癖があり、抽象的に考えるのが苦手」という気づきを共有してくださいました。この受講生が、自分の思考の癖を他人の発言と比較して認識している姿勢は、とても重要だと思われます。講師もおっしゃっていましたが、自分が発言するよりも他人の考えを知ることの方が学びに繋がることが多いです。そのため、会話の際には他者との違いを意識していこうと考えました。 なぜ他人を観察する? 他人がどのように考えて意見を出しているのかを注意深く観察することが大切です。また、説得の仕方やプレゼンテーションを観察し、自分と比較することも有益です。資料作成時には、もう一人の自分を意識するようにしています。このもう一人の自分とは、自分とは異なる考え方を持つ人、あるいは考え方が優れていると感じる人になりきることを指します。 どう模倣し活かす? マネジメント層や経営層が参加する会議にも出席し、彼らの発言から学ぶようにしています。なぜ彼らの考えと自分の考えが異なるのかを深く考え、その考え方を模倣することを心がけております。模倣した考えをもとに、自分のプレゼンや説明に活かし、プレゼン時には必ず一つは新しい考えを取り入れるよう意識しています。

クリティカルシンキング入門

思考の癖を突破する3つの視点活用法

思考の癖はどうして? 人には思考の癖があり、考えやすいことや考えたいことを自然と考えてしまいます。これらは無意識に行われ、自分自身で制約を設けていることに気付かないことが多いです。しかし、「視点、視座、視野」の3つの視を意識することで、より広い思考を得ることができます。また、思考の偏りを防ぐために、問題を分解して考えるという手法も効果的です。 学びの活かし方は? この学びは、いくつかの場面で活用できると感じています。たとえば、進行中のプロジェクトでのアイデア出しや、会議用のプレゼン資料を作成する際に役立ちます。また、部下からの提案を一緒に確認したり、データ分析を行う際には、何を知るための分析なのかを意識することで、全てのデータを解析しようという不必要な負担を避けることができます。 会議の進め方は? さらに、自分が開催する打合せでは、冒頭で会議の目的を明確に伝え、出席者の共通認識を一致させた上で会議を開始することが重要です。会議のプレゼン資料を作成する際には、その資料が目的に合致しているか、議論すべき点に見落としがないかを客観的に確認します。そして、議論の場では「本当に?」「なぜ?」という視点を持ち込むことで、議論が一段と深まるようにリードします。

データ・アナリティクス入門

データで見える未来の仕事術

平均値を使う意味は? 平均値を中心に使っていたものの、実はその名称や意味を十分に理解できていなかったことに気付きました。加重平均や幾何平均も実は使ってはいたのですが、今回の学びで、自分の仕事の中で具体的にどう応用できるかをイメージすることができました。 散らばりはどう捉える? また、散らばりや標準偏差といった指標を通じて、データ比較のためにさまざまな基準があることが理解でき、非常に興味深かったです。普段はあまり使っていなかったヒストグラムも、実際に活用することで、案件のサイズがどこに集中しているかが一目で分かり、次の一手を考えるためのヒントになりそうです。 どの平均を選ぶ? さらに、加重平均は現状のデータ分析に役立ち、幾何平均は来年度の数字を検討する際に採用できそうだと感じています。標準偏差の活用法については、これから意識しながら幅広い視点で考えていく予定です。 実践で数字はどう変わる? 明日には、過去のデータをもとに加重平均、ヒストグラム、幾何平均の活用を実践し、特に幾何平均については過去数年分のデータを基に来年度の数字の妥当性を検証してみたいと思います。これまで漠然と感覚で判断していた数字が、しっかりとした目安となると確信しています。

「自分 × 考える」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right