クリティカルシンキング入門

問いを共有、共に響く発信術

最初の問いは? 思考を始める前に、まず自分が検討する問いを相手に共有することが、ディスカッション全体のスピード感と質の向上につながると感じました。 根拠選びは? また、適切な根拠を見つけること自体が苦手だと実感しました。キーワード一つで伝わり方が大きく異なるため、言葉選びにはセンスが求められると気づかされました。 意図確認は? さらに、相手に質問の意図を確認し、その上で共通のゴールを設定することで、誤解が生じないようにすることが重要だと学びました。 整理と検証は? 加えて、ピラミッドストラクチャーを常に意識し、時間をかけて整理してから発信するよう努める必要があると感じています。発信スキルを高めるために、作成した内容をAIと共に検証することも有効だと思います。

データ・アナリティクス入門

仮説×4W1Hで開く思考の扉

なぜ仮説が必要? データ分析の基礎として、仮説設定と4W1Hを意識した分析の重要性を改めて認識しました。特に、仮説設定はつい忘れがちであるため、意識的に仮説を立てることが重要だと感じ、今後の業務に積極的に活かしていきたいと思います。 4W1Hをどう捉える? また、データを活用した分析の機会が多い中で、仮説思考を特に大切にしていく必要があると考えています。これまで漠然と4W1Hを当てはめるだけに留まっていた部分を見直し、意識的に4W1Hを活用した分析を進めるよう心がけたいと思います。 思考力はどう磨く? そのために、まずは論理的思考力の向上が不可欠と感じています。関連書籍を読み進めることで知識を深め、さらにビジネスフレームワークの習得にも努めていきたいと考えています。

データ・アナリティクス入門

自ら選ぶデータ分析の真髄

データ分析から何が学べる? データ分析を通じて、体系的な課題解決方法を学びました。実際に扱うデータは自ら補完する必要があるため、比較意識を持って必要な情報を選定するスキルを高めたいと考えています。 応用力はどこから来る? また、業務全般に応用可能なフレームワークや思考パターンを習得できたと感じています。単一の業務でなく、思考が求められる多くの場面で今回の学びを実践し、常に意識を持って取り組んでいきたいと思います。 課題対策は具体的に? 違和感や課題に直面した際は、確認を含む仮説の立案やプロセスの細分化を意識して行いたいです。分析フェーズでは、比較を通じて実証を目的としたデータ抽出や多角的な視点からの提案を心掛け、より具体的な検証ができるようになりたいと考えています。

クリティカルシンキング入門

論点で切り拓く未来への挑戦

講義の反省点は? 講義全体を振り返る中で、自己の意識に偏りがあったことを改めて実感しました。今後は、常に論点(イシュー)を意識し問い続けるとともに、ピラミッドストラクチャーやロジックツリーを活用し、MECEの原則に基づいて課題や問題を漏れなく、かつ重複せず整理しながら論理的に解決することを心がけたいと思います。 日常業務の課題は? また、日常業務で直面する問題や課題については、経験や勘に頼るのではなく、データと事実に基づいた論理的な思考を徹底する必要があると感じました。そのため、常に論点を念頭に置き、ピラミッドストラクチャーやロジックツリーを用いて体系的に整理し、根本原因や真因にまでたどり着けたかを振り返りつつ、再発防止の仕組みを確実に運用していきたいと考えています。

クリティカルシンキング入門

伝える工夫が生む未来

自分と重なる理由は? 今回の歓迎会の事例を拝見し、自分と重なる部分を強く感じました。言いたいことの理由は複数あり、相手が何を懸念し、どこに重きを置いているかによって納得のポイントも変わると改めて認識しました。 理由の伝え方はどう? また、相手の立場や関心事項に合わせて理由を伝える重要性を実感しました。そのため、話す前にピラミッドストラクチャーを用いて、伝えたい内容とその背景を整理し、構造を明確にすることが有用だと感じています。 全体の流れはどう構築? 日々の小さな相談事や、技術テーマの報告資料の作成においても、全体のストーリー構成が重要です。この可視化ツールを活用することで、相手にわかりやすく説明できるため、今後も積極的に取り入れていきたいと思います。

データ・アナリティクス入門

業務の壁、ロジックツリーで突破

現状の課題は何? 現状の業務はマンパワーに依存しており、その結果としてメンバーが常に疲弊していると感じています。これまでいろいろ検討してきましたが、改めて状況を客観的に把握するため、今回学んだロジックツリーを用いて現状の課題を書き出そうと思いました。また、問題点が十分に認識されず、日々のルーチン業務に流されがちなため、what/where/why/howを意識し、積極的に問題提起を行いたいと考えています。 解決策はどう考える? すぐに業務に結び付けるためには訓練が必要だと感じています。そのため、教材で示されたコツや留意点を参考に、身近な問題解決にロジックツリーを活用する取り組みを始めます。さらに、解決の切り口となる項目をできるだけ多く洗い出すよう努めていきたいと思います。

クリティカルシンキング入門

ピラミッドで描く学びの未来

主語の確認はなぜ? 文章を作成する際、主語と述語が正しく繋がっているか、隠れた主語が存在しないか、また途中で主語が変わっていないかを確認する重要性を学びました。こうした点に注意することで、相手に確実に意図が伝わる文章を書くことができます。 理由の組み立てはどう? さらに、理由付けをする場合には、各理由の内容だけでなく、自分がどのような視点でその理由を組み立てるのかを意識することも大切だと感じました。この考え方は、正しい文章で自分の意見を伝え、相手との意思疎通や合意形成を図るために有用です。 論理整理はどうなる? そのため、思いついたことをすぐに書き留めるのではなく、ピラミッドストラクチャーを活用して、論理的に整理された文章を書く手順を意識していきたいと思います。

クリティカルシンキング入門

反復と直感で本質を探る

振り返りはどう捉える? 今回の学びを通して、反復練習やアウトプットを行わなければ知識がすぐに薄れてしまうことを実感しました。そのため、定期的に振り返り、考えを整理し、積極的に伝えることの重要性を改めて感じました。 直感と理性の対話? また、直感や勘だけに頼らず、それを具体的な言葉にして表現することが大切だと気づきました。その裏付けが何であるかを考え、直感が本当に正しいのかを検証することは、日常生活でも有効な行動だと感じています。 自分を見つめ直す? さらに、他人の意見を参考にするだけでなく、自分自身の直感に対しても疑問を持ち、本質的な課題が何であるかを追求する姿勢を忘れずにいきたいと思います。今回学んだことを実践し、今後の行動にしっかりと活かしていきます。

マーケティング入門

仲間と挑む、マーケの実践記

認識をどう統一すべき? マーケティングの多様な解釈を踏まえ、実際の業務において仲間と認識を統一する必要性を強く感じました。また、セリングとマーケティングの違いを知ることができ、進め方によってはマーケティングではなくセリングになってしまう点も学びになりました。 活用法はどう考える? 具体的な場面でどのように活用するかはまだイメージがつかめていませんが、当社は具体的な製品ではなく、人やサービスを提供する立場にあるため、他社との違いを出すべく、日々変化する市場の動向から顧客が何を求めているのかを継続的に分析していきたいと考えています。 初心者はどう学ぶ? マーケティングに関しては未経験のことも多いため、様々な手法や過去の経験を交流を通じて身に着けていければと思います。

クリティカルシンキング入門

伝わる言葉の力に気づく瞬間

主語と述語の使い方は? 小学生の頃から学んできたため、誰もが主語と述語を自然に使えると思っていました。しかし、今回の学習を通して、うまく使いこなせていない部分があることに気づきました。今後は、正しい使い方を常に意識していきたいと思います。 日常での使い方ってどう? 仕事だけでなく日常生活においても、主語と述語を適切に使うことは必要です。対話やメール、チャットなど、どんな場面でもその重要性を感じました。 ピラミッドの伝え方は? また、上司やクライアントに何かを伝える際には、ピラミッドストラクチャーの考え方に沿って内容を整理し、伝えやすくまとめるようにしたいと思います。これまで思いつきで話していたため、今後はより意識して情報を整理することが大切だと感じました。

クリティカルシンキング入門

分解力で切り拓く未来の学び

理解のポイントは? 「分かる」という行為は、物事を分解するための一つの手法として非常に興味深く感じました。データを分解するためには、まず仮説を立て、その仮説に基づいて試行錯誤を重ねることが重要であると伺い、前向きな気持ちになりました。私自身、どうしても視点が偏ったり納得感にとらわれて視野が狭くなる傾向があるため、今後はMECEの考え方を意識して取り入れたいと考えています。 仮説の立て方は? また、顧客からヒアリングしたビッグワードに対し、なぜそのように発言されたのかを細かく仮説立てする際にも、MECEの考え方を具体的に活用できるのではないかと感じました。具体的な数的データはあまり使用しないものの、抽象的な話題についてもこの考え方が有効に機能するのではないかと思いました。

データ・アナリティクス入門

データに隠れた学びの宝石

代表値の役割は? 今回の学習では、数字と数式における代表値とばらつきの概念を学びました。代表値では、平均値、加重平均値、幾何平均値、中央値、最頻値という各種の指標の使い分けを学ぶとともに、平均値の弱点についても理解を深めました。 ばらつきの意味は? また、ばらつきを示す指標として、分散と標準偏差があることを学びました。これらの指標を使うことで、単に中心傾向を示すだけでなく、データ全体の分布やばらつきの様子を具体的に把握できるようになりました。 実践でどう活用? 今後は、日常的なデータ分析において、平均値だけでなく、加重平均値や中央値などの代表値を適切に使い分け、さらに必要に応じて分散や標準偏差も活用することで、より豊かな情報の抽出を目指していきたいと思います。
AIコーチング導線バナー

「思い」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right