データ・アナリティクス入門

A/Bテストで広告効果を最大化する方法

論理的思考の極意は? 「What」「Where」「Why」「How」の視点で物事を考える重要性を学びました。実践演習を通じて、A/Bテストを活用し、ターゲット層をグループ化して効果のあるかどうかを仮説を立てて検証するプロセスが重要であることを実感しました。また、コストや意思疎通、スピードなどを考慮して、外注か自社のデザイナーに任せるのか、またはAIに広告の表示を任せるかを判断する必要性にも気づきました。 広告の効果は見えてる? 自社でもYouTuberとのコラボ商品を展開していますが、それが実際にコンバージョンにつながっているかを検証することの重要性を感じました。ソーシャルメディアのユーザーごとの年齢や趣味を考慮しないと、ターゲット層と商品の間に乖離が生じ、購入につながらない可能性があると考え、A/Bテストを用いて広告の比較検討を行うことが非常に重要であると感じました。 クリック数は信頼できる? 普段何気なく見ているYouTubeチャンネルやInstagramなどのプラットフォームに表示されている広告が実際にクリックされる広告なのかを検証し、自社の広告もそのように費用対効果を考慮し、スピードやコスト、意思疎通などを考えて表示することを実践したいと思います。また、自社はテレビドラマとのコラボ商品が多いため、テレビの視聴率や視聴者に対して効果的なコンバージョンへの検証を進めていきたいです。

戦略思考入門

実践で切り拓く夢への一歩

学びの意義は何? 学生時代は、将来役立つ知識を積み重ねることが目的でしたが、社会人になってからの学びは実践によって意味が生まれます。学んだことをすぐに行動に移し、フィードバックを受けながら次の学習につなげるという意識の大切さを、常に心に留めています。 タスクの選び方は? 目の前のすべてのタスクに手を出すのではなく、長期的な目標達成に本当に必要な事項を見極めることが重要です。限られたリソースを有効活用するためには、何をすべきかだけでなく、あえて行わないことを明確に定める考え方が欠かせません。 戦略的思考はなぜ? また、私は既存の事業とは異なる技術を用いて新たな市場への進出を検討するプロジェクトに携わっています。そのため、戦略的に物事を考える姿勢は基本の一つです。短期的な目標の達成だけでなく、長期的なビジョンを描くこと、そして計画通りに進まなかった場合の対策まで、常に多角的に検討する必要性を実感しています。 目標検証の意義は? 現在掲げているプロジェクトの目標については、自分なりに再検証を進めています。目標達成後に事業としてどのような形が成立するか、外部環境の変化にどう対応すべきか、不確実な状況に対抗できる戦略を模索しています。同時に、自身のアウトプットをため込まずに、早期に外に出してフィードバックを受け、短いサイクルで改善することで、スピードと質の両方を向上させることを心掛けています。

データ・アナリティクス入門

ひらめきと検証、学びのワクワク旅

仮説とは何だろう? 仮説とは、ある論点に対する仮の答えや、まだ十分に理解できていないことに対する仮の答えのことです。目的に応じて、結論の仮説と、具体的な問題解決を推進するためのプロセスに沿った問題解決の仮説に分類されます。 なぜ複数を検討する? 仮説を考える際は、まず複数の仮説を立て、ひとつに固執しないことが重要です。異なる視点から複数の切り口を用意することで、網羅性のある考察が可能となります。 どの要素を比べる? また、検証の際には、どの要素を比較するのかという意図を明確にしながら進めることが肝心です。単に何となく比較するのではなく、仮説に対する反論に対応できるよう、比較対象となるデータを計画的に収集してください。データ収集時には、誰に、どのように質問するかが回答結果に影響する点にも留意する必要があります。 どうデータを公平に扱う? さらに、検証データを集める際は、自身の都合の良いデータだけに依存せず、フラットな気持ちで客観的にデータを扱いましょう。説明資料を作成する際には、想定される反論やコメントにも対応できるよう、十分な根拠となるデータを盛り込むことが求められます。 検証習慣はどうある? 日頃から、仮説とそれを裏付けるために必要なデータの関係性を意識し、どのようなデータがあれば検証に役立つのかをセットで考えておく習慣を身につけることが、効果的な問題解決に繋がるでしょう。

データ・アナリティクス入門

迷走も学びに変える仮説実践

集客の見直しはどう? 実践において、当初「集客」を問題と考えていたものの、活動を進める過程で「集客」を見失い、結果として問題の本質に気づくのが遅れてしまいました。この経験から、目的を常に意識しながら進める重要性を再確認しました。 仮説の多角的検証は? また、動画講義では仮説思考の実践方法について学びました。複数の仮説を網羅的に検討し、一つだけに頼るのではなく、多角的な視点から論点を捉える必要があると実感しました。反論を受け入れる姿勢や、都合の良いデータ集めを避けることで、仮説が誤っている場合にも柔軟に見直すことができるという点に大きな気づきがありました。 仮説の役割は何? さらに、仮説の種類やその役割についても理解を深めました。論点に対して仮の答えを示すコミュニケーション仮説と、問題を解決するための問題解決仮説といった区分や、失敗の原因究明といった過去の事例、あるいは未来の展望に基づく仮説があることを学びました。これらの仮説に検証計画をセットにして進めることで、説得力が増すことを実感しました。 学びと実践の道は? 今後は、複数かつ網羅的な視点で仮説を立てるため、各種フレームワーク(例:4Pや3Cなど)を積極的に学び、状況に応じて最適なものを選ぶ意識を持ちたいと思います。同時に、仮説と検証をセットにした提案を自分自身だけでなく、チーム全体で実践することが重要だと考えました。

クリティカルシンキング入門

データ分析で見える世界が広がる!

データ分析の最初の一歩は? これまでデータ分析を行う際、どこから手を付けてよいかわからず迷っている時間が長かったのですが、今後は「まずは分解して傾向を探ってみる」「何も見えなくても失敗ではない!」という姿勢でアグレッシブに取り組んでまいります。 情報共有で意識すべきこと 施策立案前の仮説構築、施策の効果検証、上司/同僚/取引先との情報共有や報告など、全体像を漏れなく把握し問題点を特定、改善策を検討し、データ検証し、関係者へ共有/報告するすべてのフェーズにおいて、今週の学習が生かせると感じました。MECE(モレなくダブりなく)は、マーケティングやPDCA改善に欠かせない思考であるため、常に留意して業務に取り組んでまいります。 可視化がデータ分析の鍵? データ分析においては、頭の中で考えるのではなく、まずは可視化できるもので状況を整理することが重要です。頭の中だけで整理したものでは抜け漏れが発生しやすいため、他者と共有する際のツールとしても活用できます。また、切り口に迷うよりもまずは分解をしてみて傾向を探ることが大切です。トライアンドエラーを通じて、分析方法の傾向を掴むことができます。 コミュニケーションで大切なことは? コミュニケーションにおいては、情報共有や報告の際に「モレなくダブりなく」伝えられているかを意識し、データ共有においても相手が理解しやすい加工を心掛けます。

戦略思考入門

範囲の経済性を活かす新規事業の未来への挑戦

経済性の範囲とは何か? 範囲の経済性は非常に印象深かったです。規模の経済性との比較で考えると理解しやすかったです。範囲の経済性として、優秀な人の社内異動や中途入社採用もこれに該当すると思いました。また、開発投資や設備投資についても、ある企業がもともとフィルム事業で培った技術を医薬品事業に応用するという例も挙げられます。 新規事業の成功戦略は? 私自身、規模の経済性だけでなく、範囲の経済性にも注意していきたいと考えています。現在、新規事業領域のスケール化を担当しているため、優秀な人材を社内外から確保し、新規事業領域における顧客の困りごととその解決手段の精度を上げるために、シナジー効果を意識したいと思います。また、各種バリューチェーンにおいて既存リソースの活用を検討し、事業メカニズムを理解した上で応用できる部分を応用したいと考えています。 行動計画はどう進める? 具体的な行動計画として、 ・8月までに外部環境・内部環境、自社事業の強みと弱み、自社事業メカニズム(コスト構造含む)を改めて整理すること ・9月に関係部門メンバーとのチームビルディングを行うこと ・10月に顧客の困りごと仮説立案および検証行動計画を立案すること ・11月から国内外でのマーケットリサーチおよびフィードバックを実施すること これらを踏まえ、範囲の経済性を最大限に活用していきたいと考えています。

データ・アナリティクス入門

経営者気分で学ぶ仮説解決術

データと仮説でどう考える? これまでの総復習を通して、まずデータを用いて問題の所在を読み解き、原因を仮説思考で考察し、その上で対策を検討するフレームワークを再確認できました。どんな状況においても、ロジカルに物事をとらえ、データを基に仮説を立てることで問題解決の道筋を描く大切さを強く実感しました。 なぜ一貫性が感じられる? また、ストーリー全体に一貫性があり、学びの流れが頭にしっかりと残りました。経営者になった気分で対策を検討できたことも、非常に印象に残っています。 マーケ実践はどう進む? マーケティングの分野では、日頃の活動にデータドリブンな視点を取り入れることで、施策の有効性の比較、優先順位の設定、費用対効果や効果の見通しなど、具体的な対策を実行に移す自信が持てました。施策の判断軸となる評価項目や様式を統一することで、正しい比較ができる点も大変有用だと感じました。 病院DXで何を改善? 一方で、病院のDX推進においては、導入率のトラッキングや向上施策、トレーニングの立案など、データに基づいた仮説と検証を繰り返す取り組みが今後の課題となると同時に、実践的な対策として役立つと考えています。目的を明確にし、過不足なくデータを収集、複数のメンバーと多角的な視点で仮説をたて検証することで、事前に設定した評価項目を使いながら、効果を正確に測る仕組みを構築する重要性を再認識しました。

マーケティング入門

Z世代の心を掴む新しいマーケティング戦略

ターゲット顧客の真のニーズとは? 今回の総合演習では、ターゲット顧客の不満から真のニーズを把握し、行動パターンに基づいて体験価値を付け加えることで、新しい市場で顧客を勝ち取る方法を学びました。特に、スマートフォンが当たり前となったZ世代が急速にトレンドを変えていることを実感しました。彼らの媒介を見る視点や、枠にとらわれない考え方は、新しい発想の基盤となり、Z世代について深く考える良いきっかけとなりました。 自社商品に付加価値をどう与える? 今回の『顧客が価値を感じる体験を付加価値とする』という考え方は、私たちの自社商品においても非常に重要です。しかし、我々の製品は気軽に手に取れるものではないため、新たなアプローチが必要だと感じました。その一方で、手軽に手に取れないという特性を逆手にとり、数少ない『体験できる場』に重きを置くことで、顧客が「行ってみたい」と感じるようにするのも一つの手法として考えられます。 次なるマーケティング戦略 具体的には以下の点を考えてみました: - 日常の中で触れる、または目に留まる商品にプラスαの価値を持たせる方法を検討する。 - 体験価値とは何か、その体験によってどのような感情が生まれるのかを自ら検証する。 - マーケティングの本を読み、さらに理解を深める。 このようにして、顧客の体験を重視する新しいマーケティング戦略を考えていきたいと思います。

データ・アナリティクス入門

仮説が拓くわたしの挑戦記

仮説の基本は何? 仮説とは、ある論点に対して一時的な答えを示すものであり、結論の仮説や問題解決の仮説など、さまざまな形で用いられます。この仮説を立てることで、検証マインドや関心・問題意識が向上し、行動のスピードや精度も高まるという効用があります。 データで示す理由は? また、仮説はそれ自体の正しさをデータで示す必要があり、その方法が非常に重要となります。データにより正しいことが証明されるとともに、他の説が否定される仕組みが求められます。良い仮説を構築するには、フレームワークの活用も有効であり、フィールドワークやエスノグラフィーといった手法が、質の高い仮説作成に寄与するという意見もあります。 仮説思考はどう役立つ? さらに、仮説思考は課題や目標の検討にも役立ちます。次年度の事業目標や事業拡大のために、自分なりの課題設定を行う際、また顧客ニーズの変化や新市場を捉える際に、仮説を立ててアイデアを具体化することが求められます。 来年度の目標設定はどう? 来年度の目標設定においては、売上などの事業指標だけでなく、競合との比較や自社への影響を示す独自のインデックスを仮説として設定することが推奨されます。その仮説がどのような状態になれば「影響がある」と判断できるのか、ほかの指数と照らし合わせながら検証し、実際にデータを収集して売上や実感との整合性を確かめることが大切だと感じました。

データ・アナリティクス入門

A/Bテストで見えた学びのヒント

目的と仮説は合っていますか? A/Bテストを実施する際は、まず目的や仮説を明確にし、検証項目をしっかりと設定することが重要です。仮説検証を繰り返すことで、どの施策が効果的かを見極めやすくなります。また、テストは1要素ずつに絞り、同一の期間で実施することで、結果の比較が正確に行えます。 セグメント選定の視点は? さらに、対象とするセグメントの軸や狙うべきターゲットは、単に機械的な判断で決めるものではありません。多様な視点を取り入れてバランスよく検討することが求められます。 事例の適用方法は正しい? 具体的な事例として、来週から展示会に向けた来場促進やセミナー申込促進のメール配信を予定している場合、各配信ごとにA/Bテストを行い、前年までの配信データを整理した上で効果を比較する方法が考えられます。また、現在実施している販促キャンペーンのメルマガにおいてもA/Bテストを導入することで、最適な配信内容を模索することができます。 テスト結果の比較はどう考える? たとえば、優良顧客を対象にグループ分けをしてテストを行い、結果が良かった方の内容を全体に活用して前回の配信内容との差を確認する方法があります。一方で、以前「今だけ送料無料」をアピールした際に期待した効果が得られなかった場合は、内容を再精査し、異なるパターンでA/Bテストを実施して比較することも有効です。

データ・アナリティクス入門

データが映す学びの真実

比較検証で何が分かる? データ分析の魅力は、データを漏れなく比較することで仮説を立て、現状を正確に把握できる点にあります。理想の状態が明確になると、実行可能な改善策が見えてくるため、比較検証はとても有効です。また、ヒストグラムや散布図を用いることで、データのばらつきを視覚的に把握でき、適切な分解や分類により分析の精度が向上します。これにより、異なる視点から問題点や改善案を検討できる点が非常に魅力的だと感じました。 実務でどう活かす? 学んだフレームワークを実務で活用するため、過去のデータ分析を再実施し、問題点と改善策を明確にすることを試みました。現状把握には5W1Hを用いた定量的な分析を行い、現場でのヒアリングと合わせることで、実際のデータとのズレを確認しながら解決策を検討しています。これまでグラフを活用してきましたが、ヒストグラムや散布図の導入は初めての試みで、今後さらに活用していきたいと考えています。 効果的な選定法は? 効果的なデータ分析には、収集時に重要な項目を明確にし、適切なデータを選定することが欠かせません。定期的な可視化によりデータの傾向を把握し、その結果を共有することで継続的な改善が図れます。また、What、Where、Why、Howといったステップを守ることで、思考の幅が広がり、仮説とデータに基づく検証を通してより実践的な分析が可能になると実感しました。

クリティカルシンキング入門

ナノ単科で人事業務の分析力が大幅アップ!

5W1Hで分析する意義とは? MECEを意識して、5W1Hの視点でモレなくダブりない区分で分析することを実践してみました。その結果、違いがない区分を見つけることの重要性を実感しました。逆に、違いがあると分かった区分については、どの単位で区分することが最も効果的な分析となるかを検証しました。 人事業務への具体的な応用例 担当する人事業務について、以下の場面で活用してみたいと考えています。 採用戦略の見直し方は? 採用については、自社に合う応募者の層を拡大し、志望度を向上させる施策を検討します。具体的には、志望度が高く選考に臨む層の分析を行い、現在効果的に志望度を高められていない層へのアプローチも検討します。それらの分析結果に基づいて、採用イベントや選考プロセスの改善にも取り組みます。 効果的な研修とは何か? 研修については、業務に実効性のある研修の特定と拡充を目指します。具体的には、どの種類の研修が効果的で実務に活用できているか分析し、効果的な手法を拡大する一方で、効果が薄い手法の改善も検討します。 エンゲージメント向上施策を探る エンゲージメントについては、エンゲージメント高く仕事に取り組んでいる層を判別し、逆に低い層の傾向を把握します。具体的には、高いエンゲージメントを持つ層の共通点を事例として紹介し、低い層の改善施策を検討していきます。

「検討 × 検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right