戦略思考入門

惰性を捨てる!新視点で挑む戦略構築

判断基準はどう考える? 捨てること、そして捨てるための明確な判断基準を決めることは非常に難しい課題です。特に、慣れ親しんだことは惰性で続けがちで、昔からのやり方だからと続けてしまうことが多いのです。しかし、環境の変化はむしろ捨てるための良い機会かもしれません。「餅は餅屋」という言葉があるように、選択と集中により効率を向上させることができます。新卒やキャリア採用者の新しい視点はこれらの変化に対する一つの鍵となるでしょう。 捨てる業務、見極める? 全社や各部門では、ROAの向上が命題となっており、その中で「何を捨てるか」を意識することが重要な要素のひとつです。限られたリソースで最も効果的に収益を上げるため、次の点を検討します。まず、従来のビジネスが本当に収益性向上に寄与しているかを見直し、たとえボリュームを確保できても収益に貢献しない場合は削減や廃止を検討します。また、外部委託可能な業務についても費用対効果を詳しく検証し、アウトソースすることを考えます。そして、日常業務の“当たり前”とされる手順や慣習を再評価することが求められます。 戦略はどう組み立てる? 来週からの出張では、この「捨てること」を基にした戦略づくりを進めます。海外拠点での収益性向上のために、捨てるべきものを特定し、最適なポートフォリオの構築に挑戦してみたいです。日常業務で当たり前だと思われているビジネスが本当に収益に貢献しているか、またはコストがかかっていないかを精査します。さらに、本当に「捨てて良いか」を多角的に検証します。そして、迷ったときは基本方針に立ち戻ることや、キャリア採用者からの意見を積極的に取り入れることが重要であると考えています。

データ・アナリティクス入門

仮説から行動へ!解決の近道

問題分析はどうする? 実際のビジネスでは、問題の要因が複雑に絡み合っており、「正しい」原因の究明はほぼ不可能です。そのため、原因の目星が立った段階で早急に対策を試してみることで、解決に近づけると感じました。データ収集と分析は重要ですが、what、where、whyがある程度把握できた時点で、howのアクションを起こしながら問題の原因を探ることが大切だと思います。こうしたアプローチの中で、A/Bテストは特に有用です。 仮説検討のコツは? また、原因の仮説を考える際には「対概念」を活用することが効果的であると感じました。問題に関連しそうな要素をリストアップするだけでなく、それ以外の視点にも目を向けることで、思考の幅を広げ、戦略全体の問題点やその他の要因を整理することが可能になります。 迅速な対策は? この「Howを試しながら問題の原因を探る」考え方は、変化の激しい現代の業務において非常に有効です。たとえば、定期的に行われるストレスチェックで高ストレス者が多い組織があった場合、原因を探り続けていると年度交代や組織変更で状況が一変してしまう恐れがあります。したがって、原因がある程度見えてきた段階で素早く打ち手を実行し、問題解決に向けたスピード感を持つことが求められます。 データ準備は万全? さらに、現在担当している業務において問題解決の4ステップを進める際には、どのようなデータが必要かをあらかじめリスト化しておくことが重要です。必要なデータがすぐに揃わない状況では、検証に時間がかかり、迅速な対応を妨げる可能性があります。事前に想定して準備を整え、howの実行に至るまでをスムーズに行いたいと考えています。

クリティカルシンキング入門

イシュー明確化で見えた改善への道

イシューの本質は? イシューを明確にすることの重要性について学びました。まず、思いついた解決策を実行する前に、課題の核心を押さえるイシューを明確にすることが必要です。誤ったイシューの捉え方は、課題解決の方向性を大きく逸脱させる可能性があります。適切なイシューの見つけ方として、次のプロセスを実行することが推奨されます。 目的と現状は? まずは、何を達成したいのかという目的をはっきりさせることです。また、関連するデータや情報を集めて現状を把握し、関与する人のニーズや期待を理解することが重要です。さらに、現状を多角的に分析し、具体的な問題を明らかにすることが求められます。 戦略のギャップは? 次年度の戦略立案や施策検討では、目標と現状のギャップを認識し、その原因を探るために十分な情報収集を行います。これまでの施策を見直し、改善点を見極め、メンバーと共通のイシューを持ちながら検討を進めることが重要です。 セミナー効果は? また、プロモーションを目的としたWEBセミナーを開催し、その効果を検証します。具体的には、申込人数や参加動機、顧客属性の分析を通じて、セミナーの目的と結果が一致しているかを確認します。さらに、事後営業の戦略を考え、効果を数値で評価します。 問いの共有は? 業務においては、問いから始め、問いを残し、問を共有するというアプローチも重要です。特にプロジェクト進行中においては、最初に設定した問いから外れることを防ぎ、メンバーと目線を合わせる工夫が求められます。そのために、年度初めに評価指標を設定し、過程を記録して振り返り可能な状態を構築することを考えています。

データ・アナリティクス入門

A/Bテストでお客様の心を掴む方法

原因をどう特定する? 問題の原因を探る手法として、まずプロセスを分解してどこに問題があるのかを特定し、仮説を立てることが有効です。そして、解決策を検討する際には、複数の選択肢を洗い出し、その判断基準を考えた上で重要度に基づいて順位づけを行い、取り組むべき選択肢を絞り込む必要があります。 A/Bテストの意義は? A/Bテストを活用することで、複数の施策の効果を実際に試し、反応を見て評価することができます。この手法では、仮説を持ち、検証項目をしっかりと設定することが重要です。さらに、1つの要素ずつを検証し、テストのパターンは同時期、かつ同期間で行います。期間が異なると、テストしたい要素以外の環境要因が影響してしまう場合があるためです。 広告テストは効果的? 具体的な例として、YouTubeの広告動画作成時には、お客様のお悩みに関連づけて訴求ポイントを異なるパターンで作成し、A/Bテストを行います。どちらの広告が高いクリック率やコンバージョン率を示すかを確認することで、よりニーズの高い訴求内容を把握できます。同様に、LINE配信ではイベントのキャッチコピーを複数作成し、クリック率や開封率から最も効果的なコピーを見つけ出します。 工数を減らす方法は? なるべく工数をかけずに数パターンのクリエイティブを作成したいと考えています。A/Bテストはいつも話題に上がり、実施したいと思っているのですが、なかなか時間がなく一つのパターンしか作成できないことが多いのが現状です。手間を減らす方法を模索しながら、A/Bテストを実施することで、お客様のニーズを深く理解し、問題の原因を明確にしていきたいと考えています。

戦略思考入門

目的意識を持つことで得た成長と戦略

目的意識の重要性を再認識 目的意識を持って何事にもあたることの重要性を再認識しました。フレームワークや学んだ理論はあくまで手段であり、目的意識を持って本質を捉える視点が重要です。ただやみくもにフレームワークを活用するのではなく、答えのない今のような時代だからこそ、仮説思考・仮説検証の位置づけで、今後も戦略的な思考を活用したいと考えています。 サプライヤー戦略に活用できる? 自らの業務においては、例えばサプライヤー戦略にフレームワークを活用することが考えられます。今後、どのようなサプライヤーと開発していくかという課題に対しては、SWOT分析を用いて強みを活かし、弱みを相互補完し合えるサプライヤーと共同開発するべきです。このような視点で、サプライヤーの強み弱みも仮説を持って進めることが重要です。 キャリアビジョンはどう更新? さらに、自らのキャリアビジョンの更新にもフレームワークを活用できると学びました。社会から需要のある状態を維持するためには、自分の強み・弱みを再検討し、今後どのようなスキルを身につけるべきかを考えていきたいと思います。 具体的な取り組みは? 具体的には、以下のような取り組みを行いたいです。 ・技術戦略やサプライヤー戦略など、自らの業務の中でフレームワークを活用する。 ・テーマの開発において、1〜2年ごとに振り返りを行い、辿った道が正しかったのか、どのような障害があったのかを考える。 ・思考を書き出し、言語化・可視化してアウトプットする。 ・これらをチームや上司に提案し、フィードバックをもらってブラッシュアップする。 ・学んだことを意識して定期的に振り返る。

データ・アナリティクス入門

仮説とフレームワークで導く新発想

仮説の意義はどう捉える? 仮説の意義と4P・3Cのフレームワークの活用について考察しました。現状や現象を整理し、そこから課題を明示する方法としてフレームワークは有効な手段だと認識しています。しかし、設問では仮説の立て方が問われ、その内容が単に問題点や疑問点の抽出に留まっている点に疑問を感じました。仮説を「ある論点に対する仮の答え」もしくは「分からない事柄に対する仮の答え」と定義するならば、現状の把握とその先の打ち手を考察する過程で生じるのではないかと思います。このため、ビジネス上の意味合いに限定して用いるほうが適切であり、安易に「検証」という言葉を使わないほうが良いと考えました。こうした疑問を通じて、仮説とフレームワークの使い分けが整理できたと感じます。 4P・3Cの整理法はどうなる? また、事業計画や事業分析において、4Pや3Cというフレームワークで物事を整理する手法は非常に重要です。思いつきで捉えるのではなく、フレームワークに沿って取りこぼしのない視点で分析することで、発見された課題や問題点が具体的になり、改善策を立案するための基盤となります。さらに、第三者に内容を伝える際にも、論理的に整理された情報は理解しやすく伝わります。 正しい検証はどう進む? 実際の取り組みでは、4Pや3Cのフレームワークを活用した上で、問題点に対して「〇〇ならば▼▼である」という形式で仮説を立て、その上でデータ分析により課題の抽出ができるかを検討しています。これは、問題を具体的なエビデンスをもって示すためのプロセスであり、その後の打ち手の考察へと順序立てて進めることが重要だと感じました。

データ・アナリティクス入門

仮説と比較で未来を拓く

仮説の組み立て方は? 仮説を立てるための考え方について、業務に取り入れていきたい点をまとめました。まず、「分析とは比較」であるという点を意識し、比較対象を設けることで、他者にも分かりやすい分析を目指します。また、問題解決の仮説を立てる際には、What(問題は何か)、Where(どこに問題があるか)、Why(なぜ問題が発生するか)、How(どのように対処すべきか)の4つのプロセスを順に追うことで、解決策を推進していきたいと考えています。さらに、常識を疑い、新たな情報と組み合わせながら発想を止めず、創造的な仮説に肉付けを加える方法も取り入れていく予定です。 フレームワークの活用は? また、動画学習で触れたフレームワークも業務に積極的に取り入れることで、より実践的なアプローチが可能になると考えています。 毎月の数値分析法は? 具体的な取り組みとして、まずは毎月の数値分析に注力します。解約数やサービスの利用状況に下落傾向が見られた場合、商品やサービス自体に問題があるのか、利用顧客の属性に原因があるのかを、対前年比に加えて他年度や学年、属性別といった複数の比較軸で検証し、どこにギャップが生じているのかを明確にしていきます。 WEB数値の変化は? 次にWEB数値の分析にも力を入れます。今後のWEBサービスの定期的なリリースに合わせて現在の数値を把握し、増加する数値が示す傾向を基に、即時に対策を検討できる体制を整えたいと思います。 資格取得で成長は? 数値に対する意識を継続して高めるため、分析関連の資格取得も視野に入れ、さらなるスキルアップを図っていくつもりです。

データ・アナリティクス入門

仮説力で拓く新たな学びの旅

仮説とは何か? 仮説とは、論点に対する一時的な答えを意味します。仮説を立てる際には、決め打ちせず複数の可能性を検討することが重要です。フレームワークを活用して、どの指標を基準に、何と比較するか、またそのためにどのようなデータを集計し、どのように見せるかを考える必要があります。 データはどう取る? また、着目する指標や比較対象のデータを収集する際には、「誰に、どのように聴くのか」という点が大切です。都合の良いデータだけに頼ると、誤った仮説を前提にしてしまうリスクがあります。他の可能性を十分に考慮することで、不要な仮説を排除し、より正確な情報に基づいた議論につなげることができます。 議論はどう進む? 日常の業務においても、仮説をもとに論点を提示し、議論を重ねる場面が多いです。これまで経験や肌感覚から決め打ちしていた仮説も、複数の視点で検討することで、より網羅的かつ具体的な検証が可能になります。仮説を裏付けるデータの示し方や、どのように比較し、提示するかという方法も試行錯誤の対象です。 人事事例はどう見る? 人事領域の取り組みとしては、スタッフが出会い採用内定、入社からその後の活躍、さらには休職や退職に至るまでのジャーニーマップを構築した事例が挙げられます。まずこれまでの経験や収集できるデータをもとにストーリーとしてのジャーニーを描き出し、その後、ヒアリングや不足しているデータの補完によって仮説を検証・肉付けしていくという方法です。このとき、現状の仮説が網羅的かどうか、また他の切り口がないかを再確認し、データの取り方や示し方を見直すことが大切です。

データ・アナリティクス入門

データの先にある学びの秘密

講義内容はどう感じた? ライブ講義を拝聴しながら、ポイントを迅速に判断し整理する力がまだ十分でないと感じました。どのデータセットを扱う際にも、何を明らかにしたいのかという目的意識をしっかり持ち、ロジカルシンキングや仮説立案のスピードを高める必要があると痛感しました。大量のデータを扱う中で、解決策の発見に注力するあまり、次第に目的から逸れてしまうことが実務上でも生じるため、その兆候を早期に掴むことが重要であると改めて認識しました。 営業戦略はどんな課題? 営業データを活用した営業戦略の立案においては、成約率向上という課題に対して、これまでの商談データを基に再検証を行う必要があります。過去にはあまり意識されなかったデータの粒度の粗さや、文章化およびビジュアル化の不足が、組織全体の納得感に影響していたと感じます。具体的には、なぜ成約率が低いのか、セグメントごとや担当者ごと、そして営業ステップごとの課題を明確にし、それぞれの原因を検証した上で、効果的な解決策を導き出したいと考えています。 UX改善は何が必要? サービス利用データを活用したUX向上施策の立案では、SaaSサービスのアクセスログをもとに、どの機能が利用され、どの機能が利用されていないかを明確に分類することが求められます。使われていない機能については、導入時からの利用状況や徐々に利用が減少しているのかなど、その背景を整理しながら原因分析を行います。さらに、仮説を立てた上で改善策を検討し、場合によっては機能の廃止も含めた対応を実施するために、顧客へのインタビューなども通じて検証を進めていきたいと考えています。

クリティカルシンキング入門

切り口が変える数字の物語

数字の意味は何か? 数字が持つ意味をより深く理解するためには、まず情報を分解して、その解像度を上げることが重要です。一つの視点だけでなく、複数の切り口から現象を分析することで、より正確な現状把握に繋がります。 結論前の検証は? 具体的には、一つの傾向に満足するのではなく、さらに他の可能性を探る意識を持つことや、得られた分析結果からすぐに結論を出すのではなく「本当にそうなのか」を丁寧に検証する姿勢が求められます。また、頭で考えるだけでなく実際に手を動かし、様々な視点からデータを見直すプロセスも大切です。 MECE活用で分析は? さらに、分析を行う際にはMECEの考え方を取り入れることが有効です。具体的には、階層、変数、プロセスという視点から、物事を漏れなく、重複なく整理していく手法が挙げられます。たとえば、プログラムの参加者数の伸びを検討する場合、年齢だけでなく居住エリアや参加プログラムの種別といった観点から属性を分析することで、より多角的な理解が可能になります。 課題整理はどう進む? また、自身の業務上の課題を明確化するためにも、評価の視点が抜けや重複なく組み込まれるよう、MECEを活用して細分化し、その対応力を数値化する手法は効果的です。担当している事業プログラムの認知度についても、過去数年間のデータを大学別、学部別、学年別、応募種別などの切り口で集計し、グラフ化することで、現状と改善点を明確にできます。もし、最初の分析で十分な結論が得られなかった場合には、別の切り口から再度分析を行い、想定される課題について漏れや重複がないよう整理することが大切です。

データ・アナリティクス入門

仮説で拓く問題解決の未来

仮説の重要性は? 今回の学習で最も印象に残ったのは、「問題解決は仮説の立て方で8割が決まる」という考え方です。What〜Howの4ステップを通じて、まず問題を正しく定義することの重要性を実感しました。また、仮説は一つに固定せず、複数の切り口から検討することで思い込みを防げる点も大変参考になりました。データ収集においては、誰にどのように聞くかが分析の質を左右するため、都合の良いデータだけでなく反証のための情報も意識的に集める姿勢が必要だと学びました。今後は、3Cや4Pといったフレームワークを活用しながら、仮説思考をもとに論理的な問題解決に取り組んでいきたいと考えています。 業務での応用は? また、SIerの業務においては、今回学んだ考え方が「障害対応」、「業務改善提案」、「要件定義」の各場面で役立つと感じました。例えば障害対応では、現象に対する即時対応に加え、Whatで問題を整理し、Whereで影響範囲や発生箇所を特定、Whyで複数の原因仮説を立て、ログや関係者へのヒアリングを通じて検証を進めるやり方に変えることが求められます。業務改善においては、3Cや4Pを活用して顧客課題を構造的に捉え、直感ではなく仮説とデータに基づいた提案を行いたいと考えています。今後は、会議前に最低3つの仮説を用意し、データ収集の際にも反対意見の情報を集めるなど、具体的な行動レベルで実践していく予定です。 今後の展望は? 今後は、仮説をいつ確定させるかの判断基準や、少ないデータでの分析における工夫、さらにはフレームワークの使い分け方のコツについても、さらに深く検討していきたいと思います。

データ・アナリティクス入門

数字で見える学びの未来

どうして視覚化すべき? 数字に集約することと、目で見て理解することの大切さを再確認しました。纏めたデータをグラフ化するなど視覚化することで、ヒストグラムなどを活用しながらデータのばらつきを直感的に把握できる点が印象的でした。 比較で何が見える? また、データ分析は「比較」に基づく作業であり、仮説思考が重要だと感じました。分析のプロセスでは、仮説を立て、異なる視点とアプローチを用いることによって、より本質に迫ることができると理解しています。 代表値はどう使う? 代表値の使い分けと散らばり(標準偏差)を組み合わせる方法も興味深かったです。平均値や中央値、加重平均、幾何平均など、用途に応じた手法があるため、Excelで計算できることから複雑な計算式を覚える必要はなく、実務で活用しやすい点が良いと感じました。 成約率との関係は? さらに、営業活動のように暴露機会と成約率、またユーザーの購買意欲と成約数との因果関係を数値化する場合、代表値だけでなく標準偏差による散らばりを検討することで、ユーザーの傾向をより正確に導き出すことができると考えています。まずは仮説思考から取り組む姿勢が大切だと再認識しました。 グラフの魅力は? 最後に、提供される表形式のデータを様々なグラフで可視化し、検証のヒントを得る点も魅力的です。従来の平均値や中央値に加えて、標準偏差などの散らばりを取り入れることで、ユーザーの購買情報をより明確に把握できる可能性が広がっています。定性情報をいかに数値化してデータ分析に活用するか、その工夫が今後の課題であり、挑戦してみたいと感じました。
AIコーチング導線バナー

「検討 × 検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right