データ・アナリティクス入門

仮説で拓く学びの道

分析の基本は何? 本資料は、分析を比較の視点から行い、仮説思考を持って問題に取り組むための考え方と手法を示しています。分析の要点として、プロセス、視点、アプローチの三つの軸が必要とされ、各軸が互いに補完しながら、より深い理解を促すことを意図しています。 プロセスをどう考える? プロセスでは、まず目的や問いを明確にし、その問いに対する仮説を立てます。次いで、データを収集し、分析によって仮説を検証するという流れが求められます。 視点と工夫は? 視点については、インパクト、ギャップ、トレンド、ばらつき、パターンといった観点からデータを捉え、それぞれの側面から情報を整理していきます。一方、アプローチでは、グラフ、数字、数式などを用いて、情報を視覚的かつ計量的に表現することで、理解しやすくする工夫が大切です。 可視化はどう? 比較のための可視化手法としては、データの特徴を一つの数字に集約する方法、グラフ化して目で捉える方法、そして数式に集約するアプローチがあります。これにより、データの持つ意味がより明確になります。 代表値は何? また、データを見やすくするためには、代表値と分布の確認が有効とされています。代表値としては、単純平均、加重平均、幾何平均、中央値などがあり、一方、ばらつきを見るためには標準偏差が活用されます。特に、95%のデータが含まれるという2SDルールは、分布の確認において重要な指標となります。 契約単価の意味は? 具体例として、【1】の契約単価の場面では、相加平均を用いた結果、受注率などの違いが十分に反映されず、平均値が大きく見えてしまうという事実が挙げられます。そのため、加重平均を用いることで、感覚に近い平均単価が算出できる可能性が示唆されます。 成長率はどう考える? また、【2】の成長率の場面では、合計の成長率を足して年数で割る方法が用いられていましたが、こちらは幾何平均を利用するアプローチが適切です。具体的には、(1+x)^2=◯年後の売上/スタート年の売上という考え方に基づく計算が求められます。 計算見直しは? これらの考え方を踏まえ、Q2では【1】と【2】の実際の計算を見直し、過去に作成したデータを再評価する行動を取る必要があります。また、平均値の計算方法一覧を見える場所に保存し、必要な際にすぐに確認できるようにすることで、定着した学習行動が実現されることが期待されます。

クリティカルシンキング入門

多様な視点で問題解決を進める方法

現状把握の重要性とその手法は? 現状を把握するためには、様々な切り口からとらえることが重要です。私は、自分がすぐに思いつく切り口に飛びついてしまいがちなので、切り口そのものをできるだけ多く考え、実際に手を動かすことが大事だと感じました。迷っている時間があるなら、少しでも多く手を動かした方がよいでしょう。 MECEの活用で視野が広がる? この切り口を網羅的にとらえるためには、MECE(Mutually Exclusive, Collectively Exhaustive)の観点が大事です。MECEには①層別分解、②変数分解、③プロセス分解があるため、把握したい現状に応じてどの分解方法が適切かを考えて取り組んでいきたいです。 仮説設定はどう導く? また、切り口を考える際に、自分なりの仮説を立てることも大事だと学びました。仮説があれば、それに沿った切り口を設定し、求める情報に早くたどり着ける可能性が高まります。ただし、仮説にとらわれすぎて視野が狭まるのは避けたいですが、ある程度の仮説を持つことは重要です。 自分の推測にとどまらないには? 様々な立場の人が関与する内容を進めていくうえで、それぞれの立場からの最適解をとらえる際に切り口の観点が使えると感じました。これまでは「自分がその立場だったらどう思うか」という考え方をしていて、結局それは自分自身のとらえ方が大いに関与していることになると気づきました。「自分がその立場だったら」という漠然とした推測ではなく、MECEの観点も取り入れて最適解を導いていきたいです。 プロセス分解で振り返る意義とは? また、起きてしまったことを振り返る際にプロセス分解が使えると感じました。時間軸として捉えた際に、どの部分でもっとこうしておけば変わった、と考えられれば、自分自身の傾向や、これから具体的にどの部分に留意して進めていけばいいかが認識しやすいと思います。 改善行動の具体策は? 今後、主に次の2点を行動に移したいです。まず、様々な立場の人が関与する問題を進める際に、「他の切り口がないか」を考える。その際、頭の中だけで考えるのではなく、実際に書き出したりメモを取ったりして視覚化します。そして、起きたことを振り返る際に、プロセス分解を行い、具体的に改善箇所を認識するようにします。また、プロセス分解後に他の分解方法も試して、時間軸だけでなく不足していた観点を認識し、自分の傾向を把握したいと思います。

データ・アナリティクス入門

データに宿る成長ストーリー

全体の流れはどう? 全体の流れとしては、WHAT→WHERE→WHY→HOWの順で進める点が印象に残りました。ただ単にデータを集めるのではなく、ひとつひとつの分析がストーリーとして意味を持つように、傾向をしっかり掴むことが大切だと感じました。 問題は明確か? まずWHATの段階では、今解決したい問題を明確にし、目標となる結論やイメージをもっておくことが重要です。何のためにデータを扱うのか、最初に目的をはっきりさせることで、分析全体の方向性が定まります。 どの候補を選ぶ? 次にWHEREのステップでは、複数の候補を出し、解決に役立ちそうなポイントやデータが取得可能かを検討します。単独で見る方法や、ツリー・組み合わせといった整理手法を用いながら、どの観点に重点を置くかを決めていくとよいでしょう。 原因は探れた? さらにWHYのフェーズでは、考えられる原因をできるだけ多く、また網羅的に仮説として挙げることが求められます。どんな要素が問題に影響を及ぼしているのか、広い視点で捉えることが分析の精度を高める鍵となります。 数値は何を示す? また、データを見る際には実数と比率の両面から代表値などの数値に注目し、明らかにすべきポイントを意識する必要があると再認識しました。どのデータが問題解決に直結するのかを見極めるために、どんな情報をどう加工すべきかを事前に考えておくことが重要です。 目的は明確に? 特に、日々の業務では「言語化しなくても大丈夫」という考えに陥りがちですが、データを扱う際には必ず「何をしたいのか」という目的を明確にすることが不可欠だと感じました。また、データ収集時にも最終的なアウトプットのイメージを持つことで、やみくもな収集を避け、意図のあるストーリーを先に構築する姿勢が大切です。 フォーマットは有効? 今後は、以下のフォーマットを活用していきます。まず、解決したい問題を最初に記述し、次にストーリーや考え方、データの集め方・分析方法の全体像を示します。その上で、WHAT、WHERE、WHY、HOWの各パートを用意して進める手法を徹底していきたいと思います。 仮説は多角的? 最後に、仮説思考における「複数と網羅」という視点が非常に印象的でした。インパクト、ギャップ、トレンド、ばらつき、パターンなど、さまざまな角度から物事を見る姿勢は、今後の成長に大いに役立つと感じています。

戦略思考入門

戦略思考で拓く学びの未来

目標はどう決める? 戦略志向とは、適切なゴールを定め、現状からそのゴールまでの最速かつ最短の道筋を描くことだと改めて実感しました。また、バリューチェーンの視点をより深く理解することで、生産性向上のヒントが得られることを痛感しました。今まで「分かったつもり」で進めていた部分を改め、指数関数的な変化に対して敏感に反応する必要性を感じました。 返報性を活かすには? さらに、返報性の原則を戦略的に活用する重要性にも気づきました。本質を見抜き、仕組みを捉えるためには、とにかく実践して自社の3C分析を試みることが大切だと感じています。同時に、最新のテクノロジーや新たな知識を継続的に学び続ける必要性も強く感じました。 規模調整はどうする? 規模の経済性については、コンサルタントの数が増えることで、一人当たりの固定費を下げる可能性があると理解しました。しかし、社員を増やしすぎるとコミュニケーションや各種管理コストが増大するため、フロントの生産性を最大化できる最適な規模を見極めることが非常に重要であると考えました。また、習熟効果においては、入社後の成長過程や、先輩の知見を若手に効率よく移転する仕組みを再評価すべきだと感じました。 AIで採用は変わる? ネットワークの経済性の観点から、金融業界以外でも適切なコンセプトを設定することで採用決定にかかるコストを削減できる点は大いに示唆に富んでいました。目の前のお客様への対応に加え、外部環境そのものの変化、特に生成AIの進展によるリクルーティングビジネスへの影響を、より深く分析する必要性があると痛感しました。指数関数的に進化する技術に遅れをとらないため、自社でもその活用方法を積極的に模索していく所存です。 採用戦略はどう進化? 最後に、データに基づいた人材発掘や自動化された評価・選考、企業ニーズの高度な分析、最適なマッチング、リモート面接・契約支援、さらには入社後のパフォーマンス追跡といった、一連のリクルーティングビジネスのバリューチェーンについて学ぶ機会は非常に有意義でした。また、自社のビジネスプロセスの本質を見極め、2フロア分の家賃負担と8割の在宅勤務という現状を踏まえ、社員の最適な増員シミュレーションを行うことで、固定費の軽減と利益率の向上を図る重要性を再認識しました。

クリティカルシンキング入門

数字を視覚化して成果を上げる方法

数字を分解し要素を見極めるには? 数字を分解し要素に分けることで、どこに差分があるのかを明確にすることが重要です。数字そのものではなく、割合や順番でとらえることで、差異が見えやすくなります。そのためには、割合や順番をグラフなどで視覚化すると効果的です。 多様な観点からの切り分け方は? 分解の切り口には様々な方法があります。多様な観点から切り分けることで、特徴や差分を特定していきます。特徴がある要素を見つけた場合、他に差異がないかを引き続き分解して検証します。本当にそう言い切れるかという視点で深掘りすることが必要です。 もし分解して特徴が見つからなくても、それ自体が間違いではなく、差分がないことがわかるという成果となります。切り分け方に固執せず、実際に手を動かしてみることが大切です。MECEに基づく切り分けには、層別、変数、プロセスがあります。MECEを適用する際には、最初に「全体」とは何かを定義し、全体の範囲を決めることが肝心です。 分解が市場調査にどう役立つ? これらの方法は、市場調査や競合他社の分析に役立ちます。例えば、同じ商品やサービスでも各社がどのように成り立たせているかを要素に分解し、差異性を探ることで、仮説を立てることにもつながります。また、業務システムの改善案件でも、どのプロセスにどれくらいの時間や人手がかかっているのかを分解することで、改善策を見つける手助けとなります。 プレゼン資料をより説得力のあるものにするには? データを加工する際には、クライアントへの資料をより伝わりやすく、説得力のあるものにすることが求められます。数字そのものではなく、割合や順位といった形で意味を視覚化し、要素ごとに差異性や特徴を明らかにすることで、しっかりと説得力のあるプレゼンが可能となります。 全体の定義はなぜ重要? まずは全体の定義から始め、チームで共有することが重要です。全体の定義ができたら、次は分解の切り口について皆でアイデアを出し合います。それを元に切り口ごとで差異や特徴を分析し、必要があれば更に深掘りします。特徴や差異が出ない場合でも、その事実を記録として残すことが重要です。数字はそのまま使わず、全体の中の位置づけやインパクトのある要素を際立たせるなど、ビジュアル化して関係者の共通認識とすることです。

データ・アナリティクス入門

問題解決を加速するストーリー設計

問題解決の本質は? ストーリー設計は、問題解決に向けた重要な要素です。分析に取り組む前に、解決したい問題を明確にし、結論のイメージを持つことが必要です。これにより、分析のプロセスが円滑に進められます。 仮説思考で何を見る? 分析のプロセスには、仮説思考のステップがあります。まず目的を設定し、仮説を立て(多少外れても問題ありません)、データを収集して検証します。また、5つの視点を持つことが重要です。インパクト(どれだけ影響を与えるか)、ギャップ(違いを見つける)、トレンド(時間の中での変化)、ばらつき(分布を見極める)、パターン(法則性の有無)を確認します。アプローチは、グラフや数値、数式を活用して進めます。 学びの次の一歩は? 今後の学習においては、考えを言葉にする「言語化」や本質を見抜く力、自分ごと化が重要です。また、「ありたい姿」に向けてのチェックポイントとして、具体性や意義、挑戦性、現実性を考慮し、モチベーションを維持する仕組みを構築する必要があります。 役割と判断の秘訣は? 私に求められている役割は、販売全体の動向を注視し、適切な配分調整で営業利益を達成することです。さらに、働きやすい環境作りや各自が能力を向上できる環境整備を推進します。そして、上司や部下、社外の方々と積極的にコミュニケーションを取り、一方的に考えを固執せず、全体最適な観点で判断を行います。大局的な会社の方針や戦略、動向を踏まえた部門運営を明確に提示し、決断します。 現状改善の策は? 会社のDX推進プログラムにエントリーし、具体的な課題解決に取り組んでいます。例えば、Web関連の各種KPIを全社の目標と関連づけ、可視化することが求められています。これは、WebのKPIが達成されても営業利益が未達成となる現状を改善するための施策です。また、プロモーションを投資対効果で判断する仕組みが必要とされています。さらに、データを活用できる人材の育成も重要課題です。専門的な分析を行う人材と、日々の判断を容易にするためにデータを活用する人材を育成する方針です。 今後の学びはどう? 以上の取り組みを通じて、今後も必要なスキルの向上や新しい学びを続けていきます。

データ・アナリティクス入門

仮説思考でビジネスを加速するテクニック

仮説の意義をどう捉える? ビジネスにおける仮説は、結論に対する仮の答えや具体的な問題解決のための仮説を含み、過去、現在、未来の視点から分析します。仮説の意義は、次のような点で明確です。まず、検証する姿勢が向上し、その結果として意思決定の精度や説得力が増します。また、関心や問題意識が高まるため、仮説形成には不可欠です。そのほか、スピードアップにつながり、行動の精度も上がります。 仮説の立て方はどう? 仮説を立てる際には、知識の幅を広げ、「耕す」アプローチが重要です。ここでは、なぜ5回も別の観点や時系列、将来予測、類似・反対事象とセットで考えます。また、ラフな仮説を作るために常識を疑い、新たな情報との組み合わせや発想を止めない工夫が役立ちます。極端な仮定の質問や一見ばかばかしい質問、否定形を作ることによって常識をリセットし、価値ある組み合わせを見つけます。さらに、「だから何が言える?」「他に何があるか?」といった継続的な発想が重要です。 仮説検証のポイントは? 仮説の検証においては、必要な検証の程度を見極めた上で、フレームワークの活用と情報収集を行い、分析します。また、仮説の肉付けや方向転換も検討します。仮説思考をリードするリーダーとしては、率先して行動し、質問を投げ、チームで役割を分担することが求められます。さらに、自分の生きがいやパフォーマンスを再確認するリーダーシップも重要です。 購買の実態をどう見る? 購買プロセスとしての5Aカスタマージャーニーでは、認知、訴求、調査、行動、推奨の各ステップを踏みます。購買が必ずしも目標ではなく、SNSなどでの愛着共有や拡散が重要視されます。企業発信よりも、顧客からの発信が心に響くため、その点を重視します。 募集戦略はどう練る? 教育カリキュラムの構築と生徒募集活動の二つの側面で仮説思考と検証を行います。特に生徒募集活動に関しては、5Aカスタマージャーニーを考慮し、広報活動に活かします。知識を「耕す」ためには、ノートにまとめ、実践し結果を記録していくことが大切です。さらにフレームワークを積極的に活用し、チームと共有することや、リーダーとして建設的な質問を投げることが求められます。

クリティカルシンキング入門

データ解析で見える新たな地平線

解像度の高い情報化方法は? 単なる数値データを解像度高く意味のある情報にするための方法について考えました。まず、データの加工では、比率を見たり加算したりとひと手間加えることで、情報を活用できる状態にします。また、グラフ化することで、数字では見えづらかった傾向を視覚化し、理解を深めることができます。 データ分解のポイントは? データの分け方については、グラフ化した後にどの粒度で分けるかが重要です。機械的に分けるのではなく、仮説を持って複数のパターンを試行錯誤することで、有意義なデータを導き出すことができると考えています。分解のポイントとしては、事柄を「いつ、誰が、どのように」といった複数の視点から見ることが重要です。分解した結果、傾向が見えない場合でも、その視点では傾向が見られないという意義のある結果になります。さまざまな切り口で分解し、一度立ち止まって本当に正しいのかを考えることも大切です。 MECEに基づく問題解決とは? 問題解決のステップを踏む上では、MECE(モレなく、ダブりなく)を意識します。MECEの切り口には、全体を定義して部分に分ける層別分解、事象を変数で分ける変数分解、ある事象に至るプロセスで分けるプロセス分解などがあります。これにより、モレなく網羅的な分析が可能になります。 フィードバックの重要性 最後に、物事をMECEを軸に分解して考える際、考え方の偏りによってモレなくという部分が満たせなくなることがあるため、自身の考えの癖を常に意識し、他者からのフィードバックを受けて手法の精度を高める必要があります。また、分析結果が仮定と近い場合でも、すぐに結論付けず、一歩踏み止まって再考する習慣を大切にしたいと考えます。 システム運用の問題予防はどうする? システム運用における問題予防の観点では、膨大な数値データの中から意味を見つけ出し、データを扱う方法を変えていくことが重要です。H/W、M/W、NWの性能レポートや監視ツールのデータから、予防保守という視点で今後起こり得る問題の傾向を掴むようにデータを活用していきたいと思います。

戦略思考入門

顧客視点で磨く、新たな価値提案への道

学び直す顧客価値と持続可能性 今週の学習では、「顧客価値」と「持続可能性」の重要性について再認識しました。特に、私はこれまで希少性や付加価値に注目してアイデアを考えていましたが、「顧客にとって本当に価値があるのか」という視点が欠けていることに気づきました。さらに、顧客視点で競合を特定するのは非常に難しい課題だと感じました。従来の市場だけでなく、デジタルトランスフォーメーション(DX)の進展により、全く異なる分野からの代替品が競合となる可能性もあります。このような環境の変化を捉えるためには、広範な市場にアンテナを張り巡らせ、常に最新の動向を把握することが必要だと学びました。この気づきを活かし、今後は顧客視点を意識した仮説検証を重ね、具体的な価値提案を磨いていきたいと思います。 SI業界における持続可能性の課題は? SI業界における「持続可能性」の重要性も改めて考えさせられました。特に、技術の進歩により、かつては差別化の要因となっていた技術やサービスが他社にも容易に模倣される現状に直面しています。この課題に対処するには、最新の技術を追い続けると同時に、既存の強みを活かした独自の価値提案を作り出す必要があると感じました。また、VRIO分析は非常に有用であり、まずは自社について実施してみたところ、組織の観点が弱いという課題を認識しました。今後はチームメンバーとともにVRIO分析を実施し、他の視点を取り入れることで新たな強みや未認識の課題を発見したいと考えています。 新技術導入のための戦略は? 自社のサービス開発の場面では、新技術を導入する際、その技術がただの流行ではなく、顧客にとって長期的な価値を生み出す持続可能な競争優位性を持っているかどうか、導入前にプロセスを強化したいと思います。また、新技術分野やDX活用事例など、日々の情報収集の重要性を再認識し、セミナーへの定期的な参加や業界レポートの読み込みを今後も心がけていきたいです。競合他社との差別化ポイントを明確にする取り組みを進め、VRIO分析で得られた洞察をもとに自社の競争優位性を高めるための改善策を検討していきます。

データ・アナリティクス入門

仮説で拓く!多角的学びの道

分解で何が見える? 今週の学習でまず印象に残ったのは、問題の原因を明らかにするためにプロセスを分解する考え方です。以前学んだロジックツリーと同様のアプローチで、複雑な問題も整理しやすくなる点が非常に参考になりました。 A/Bテストの本質は? また、初めてA/Bテストについて学びました。Webサイトやアプリの改善において、2つのパターンを比較してどちらが効果的か検証するこの手法は、データに基づいた改善策を決定する上で非常に有用だと感じました。 対概念で広がる視野は? さらに、対概念という考え方も学びました。対象となる事象の反対の観点を同時に考えることで、物事を多角的に捉え、より本質的な理解につながるという点が印象的でした。 患者動向をどう分析? 診療科別の患者受診動向データ分析に関する学習内容も非常に有益でした。分析の視点に差異が生じた場合に、仮説に基づいて問題解決のプロセスをWhat(問題の明確化)→Where(問題箇所の特定)→Why(原因の分析)→How(解決策の立案)のステップで進めることで、より精度の高い分析が可能になると理解しました。これまではいきなり解決策を検討することが多かったため、本質に迫った対策を導き出す点で大きな学びとなりました。 仮説と実試行は? また、現時点ではA/Bテストの具体的な活用場面はイメージしづらいものの、仮説を試しながら問題解決につなげる考え方が日々の業務にも応用できると感じています。 比較で見える分析法は? 分析の基本的な進め方については、「分析は比較である」という考え方のもと、①目的・問いの明確化、②問いに対する仮説の設定、③必要データの収集、④分析による仮説の検証というサイクルを回すことが重要だと学びました。インパクト、ギャップ、トレンド、ばらつき、パターンなどの視点にも着目し、グラフや数値、数式を用いて視覚的に分かりやすく情報を提示することが求められます。仮説思考やフレームワークを活用して多角的に検討することで、データから有益な情報を引き出し、効果的な行動につなげることができると実感しました。

クリティカルシンキング入門

MECEで問題をスッキリ解決する方法

物事を分解する学びの重要性とは? 物事を分解する方法について学んだことが非常に有益でした。まず、全体像を明確に定義し、目的に沿って切り口を設定し、MECE(漏れなく・ダブりなく)の原則を用いて事象を分解します。これには、「層別分解」、「変数分解」、「プロセス分解」の3つのパターンがあります。 分解手法の具体例をどう活用する? 層別分解では、「年齢別」、「性別」、「季節別」といったように、特定のカテゴリーごとに事象を分けます。変数分解では、「売上=客単価×客数」のように、事象を構成する要素に分解します。プロセス分解では、ある事象のプロセスを詳細に書き出し、そのどこに問題があるのかを分析します。 MECEが導く次の一手は? 分解する際には、異なる視点が混在しないよう注意し、まずは試みてみることが重要です。たとえ分解した結果、特筆すべき点が見つからなかったとしても、それは「ここには差がなかった」という価値があり、他の観点での分解につなげることができます。失敗と捉えず、次の行動に繋げることが大事です。 これを売上分析に応用すると、例えば「年齢別」、「性別」、「季節別」に層別分解したり、「売上=客単価×客数」という変数分解を用いたり、プロセスの中の問題点を探るプロセス分解が有効です。 DX人材育成にMECEはどう役立つ? また、DX人材育成に関する施策を進める際の根拠としても使えます。例えば、社員のデータ活用率を上げることを目的に、現状を把握し、MECEを活用して問題点を明確にすることで対策を立てることができます。 意思決定の効果をどう高める? 意思決定時には、情報をMECEで分類し、優先順位を決める手法が活用できます。これにより、どの情報を基に判断すべきかが明確になります。また、プロジェクト進行中に意見が割れた際には、目的を再定義し、網羅的に議論ができているか確認することで、考慮漏れがないかをチェックすることができます。 このように、MECEの原則を用いることで、さまざまな問題や課題を効果的に分解し、具体的な対策や判断を導き出すことができます。

戦略思考入門

戦略的思考で強みを活かす方法

戦略の独自性はどう考える? 戦略には独自性の強みが必要だと感じています。私は目的意識を持って、ゴールに向かって最短かつ最速の道筋を意識して取り組んでいました。しかし、自分自身や自社の強みを生かしつつ戦略を立てることについては不安が残っています。授業中に取り上げられた大学受験の例を思い出すと、将来何を目指すか、そしてそのゴールに到達するためにどう勉強すれば良いのかまでは考えていたものの、登場人物の強みやどこを伸ばすのかという視点が抜けていたと感じました。 強みと弱みの使い方はどう? 今後は、戦略を立てる際に、強みを発揮できる場面を意識して、その視点を組み込むようにしたいと思います。そして、弱みをどうカバーするかという対処法も考慮し、MECE(Mutually Exclusive, Collectively Exhaustive)を徹底します。まずは、自社の強みと弱みを言語化する必要があります。また、このやり方を本講座で学んでいきたいです。 新規事業の実現方法は? 新規事業の立ち上げにもこの考え方を活用できると感じています。まだ会社が立ち上げ初期の状態にあり、ほぼ全てが新規事業に該当しますが、どうしても短期の利益を優先してしまうことがあります。しかし、中長期の利益を挙げるためには、戦略的に何を取り組むか、何をしないか(しないことを外注する選択肢も含めて)を決め、強みをどう伸ばすかを考えます。特に、現在の課題としては、やらなければならないことが多すぎて余裕がありません。そのため、まずは以下の視点で取捨選択する必要があります。 ・本当にそれは自分がすべきことなのか? ・外注できる業務はないのか?それを生成AIなどのツールを使って最小コストで行えないか? ・その仕事がレバレッジが効くものであるか? 具体的な行動としては、以下を実施します: - 先に挙げた項目の観点で業務を整理する(11月中)。 - 自分がやる必要のない業務は外注し、外注先の選定や生成AIの活用を行う(12月中)。 - 改めて自社の強みと弱みを明文化して、Notionに書き起こす(12月中)。

「視点 × 観点」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right