データ・アナリティクス入門

データ分析で見つけた新しい視点と手法

なぜデータ分析の目的が重要? 今回の講座を通して、データ分析の方法について新たな視点を得ることができました。これまでは、やみくもにデータ分析に取り掛かりがちで、HOWにばかり目を向けていましたが、まずは目的や問題点を特定し、そのうえで分析を進める重要性を認識しました。また、複数の仮説を持ち、それを検証するプロセスも新たな学びとなりました。この講座を通じて、アウトプットの重要性も改めて実感しました。インプットしたことはすぐに忘れてしまうため、学んだことを自分の言葉にする時間を確保し、習慣化することが大切だと感じました。 データ分析のステップとは? 現業務においては、データ分析をプロセスに分けて取り組みたいと思います。具体的には、目的の設定、問題点の特定、原因の分析、解決策の検討というステップを踏むことで、自分の行うデータ分析の目的を明確にし、どのような視点で仮説を考えるべきかをシャープにしていきたいと考えています。 データ分析の型をどう身につける? また、データ分析の型を身につけたいと思います。特定の分析を行う際の型が身についていれば、データ分析の実行が容易になると感じました。例えば、特定の状況で使う分析手法をあらかじめ知っておくことで、効率的に進められるでしょう。 学びを習慣化する方法は? さらに、自身の成長のためにも学びやアウトプットを習慣化したいと考えています。講座を通じて行った振り返りやグループワークでの意見交換は、知識や思考を深める助けとなりました。これを続けて習慣にしたいと思います。 実践知識をどう高める? データ分析の実践知識についてもさらに勉強を進めたいです。他社事例などを参考にしながら、より鋭い経営分析や戦略検討ができる基盤を築けるよう努力します。 BS項目の分析はどう進む? 特に、まだ分析が進んでいないBS項目については、プロセスに則って分析し、課題解決に取り組む予定です。また、週に1度はアウトプットの日を意識的に作り、学んだことを整理し、反省点や来週の目標設定を行う時間を確保したいと思います。

リーダーシップ・キャリアビジョン入門

メンバーの力を引き出す秘訣とは?

エンパワメントの本質は? エンパワメント・リーダーシップは、メンバーに権限を委譲し、自律性を高めることで彼らの能力を最大限に引き出すスタイルです。このリーダーシップを実行するためには、いくつかのポイントがあります。 目標設定はどう決める? まず、目標設定が重要です。メンバーには、その能力を少し上回る難易度の目標を設定し、それを達成するための計画は本人に任せます。必要であれば支援も提供します。良い目標を設定するためには、メンバーに適した仕事を余裕を持って依頼し、彼らの本音をよく知ることが求められます。これが結果として、メンバーのやる気やモチベーションを高めます。 対応方法はどうする? さらに、依頼内容に応じた対応方法も重要となります。例えば、「分からないからできない」場合は丁寧に説明し、「分かったけどできない」場合には不安を解消するための対話を行います。「分かった、できるがやりたくない」場合には、メンバーがやりたくなるような仕事の渡し方を工夫します。重要なのは、合理的な説明よりも、相手の情緒的な気持ちを大切にすることです。 質問力で成長する? また、メンバーの育成には質問力が重要であり、特にオープンクエスチョンの活用が鍵となります。これによって、メンバーの思考を深め、自律的な問題解決能力が引き出されます。 実践事例は何か? エンパワメント・リーダーシップを活用するため、いくつか具体的な取り組みを行っています。一つは、定期的な1対1のミーティングで、オープンクエスチョンを活用してメンバーの思考を促し、進捗を確認しています。権限委譲では、プロジェクトやタスクをメンバーに委譲し、彼らの自律性を高めて成功体験を積ませています。また、メンバーの成果には具体的で建設的なフィードバックを提供し、ポジティブなフィードバックを通じてモチベーションを高めることを重要視しています。 これらの取り組みを通じて、メンバーが最大限に力を発揮できるよう支援し、組織のミッションを達成する強力なチームを築くことを目指しています。

データ・アナリティクス入門

仮説検証で切り拓く未来

仮説検証はどう進める? 原因についての仮説を立て、その検証のためにデータを集積することは、とても重要なプロセスです。思考の整理には、フレームワークの3C(Client, Competitor, Company)や4P(Product, Price, Place, Promotion)を活用することで、さまざまな視点から情報を捉えやすくなります。また、データの集積方法としては、複数の仮説を構築し、比較するためのデータを収集すること、さらには反論を排除できる情報まで踏み込むことが求められます。 仮説思考って何? 仮説思考には「結論の仮説」と「問題解決の仮説」があり、特に後者はWhat > Where > Why(原因追及) > How(Solution)の順序で検証することで、その精度を高めることができます。これまでは、業務上の課題に対し、2~3の情報のみで仮説検証を行っていたため、フレームワークや仮説プロセスを十分に活用できず、深堀りができていなかったと感じます。 情報の正確さは? 複数の視点から検証を行うことで、偏りのない包括的な情報が得られると同時に、正確なデータと信頼性の高い情報源へのアクセスの重要性を改めて認識しました。不正確な情報による誤解を避けるためにも、情報の正確さは不可欠です。 過去の教訓は何? 過去の業務を振り返ると、複数のデータベースを活用していたため、データ統合の正確さや集積時点の一貫性が取れていなかったことを反省するとともに、自分のデータ分析に対する知識不足を痛感しました。今後は、正しい仮説を立てることで説得力を持たせ、より正しいアクションへと結びつけていきたいと考えています。 実践で学ぶ仮説は? また、日常のさまざまなシチュエーションにおいても仮説検証を実践し、Week4で習得した知識を無料研修などの実践の場で活用していくつもりです。問題解決の仮説プロセス(What > Where > Why > How)を業務に取り入れることで、仕事の分析や効率、精度の向上につなげていきたいと思います。

クリティカルシンキング入門

思考の偏りに気づく!揚げ物と自己反省の旅

自己認識の意義は何? 今回の学習を通じて、私は自由な発想ができる人間が、無意識のうちに偏った考え方をしてしまうことを学びました。それを防ぐためには、「もう一人の自分」を持ち、自分を客観視することが重要であるということです。また、客観的な視点を養うトレーニングとして、他者とのディスカッションが有効であることも知りました。ディスカッションを通じ、自分の意見を述べるよりも、他者の意見を聴くことから多くを学ぶという点が特に印象に残っています。 思考の偏りに気づいたのは? ライブ授業後の懇親会で「揚げ物をからっと揚げるための方法」について話がありましたが、そこで私は早速偏った思考をしていることに気づきました。「もう一人の自分」の視点で考え直した結果、以下の点を補いました。 揚げるコツは何? 揚げ物をからっと揚げるために注意すべきことは3点あります。まず1つ目は揚げ油の温度です。油の温度が下がると、からっと揚げることは難しくなります。挙げ油を多めにするか、揚げる量を少なくして温度を保つことが大切です。また、温度計を使うとわかりやすいです。2つ目は揚げ時間です。材料の種類やサイズに応じて異なるので、注意が必要です。タイマーを利用し、目安の時間で設定することが役立ちます。最後に、衣の作り方についてです。小麦粉を溶く際は混ぜすぎないように注意し、冷たい材料を用いると良い結果が得られます。 改善点はどこに? 以上が揚げ物をからっと揚げるポイントですが、補うべき点や改善点があれば、ご意見いただけると嬉しいです。 伝え方はどうする? さらに、上司に仕事を報告したり、部下に仕事の進め方を説明する際には、伝えるべき情報を整理し、わかりやすくすることが必要だと考えています。また、部下とのコミュニケーションでは、相手の考えを引き出す話し方も意識したいです。話す前に「もう一人の自分」の視点で見直し、考え方に偏りがないか確認する習慣をつけています。相手の話を聞く際も、自分の考えにない点について深く考え、さらに質問を投げかけるように心掛けています。

データ・アナリティクス入門

AIDAとAIDMAを理解して見直す購買行動

AIDAとAIDMAの区別は? 「AIDA」と「AIDMA」の違いについて学んだ結果、これまで曖昧だった理解が整理されました。 AIDAの流れはどう? AIDAモデルは、顧客が商品やサービスを購入するまでのプロセスを4つの段階で説明します。最初のAttention(注意)では、消費者が商品やサービスに興味を引かれる段階で、広告やプロモーションが効果的です。次にInterest(興味)で、消費者はさらに情報を求めます。Desire(欲求)の段階では、消費者の心に商品を手に入れたいという欲求が生まれ、最後にAction(行動)で、実際に購入に至ります。 AIDMAは何を重視? AIDAとAIDMAの違いも明確になりました。AIDAは購買行動にフォーカスしていますが、AIDMAは購買前の心理プロセスと記憶を重視しています。AIDMAは消費者が購入に至るまでの詳細な心理プロセスを分析するために適用されます。 ダブルファネルとは? また、「ダブルファネル」という概念についても学びました。これは、パーチェスファネルとインフルエンスファネルを組み合わせたもので、消費者の行動をより詳細に分析することができます。パーチェスファネルは、商品認知から購入までの過程を表し、インフルエンスファネルは購入後の情報発信までの過程を示します。この分析を通じて、顧客行動のボトルネックを特定することが可能です。 クリック率はどう見る? デジタルマーケティングにおいては、クリック率やコンバージョン率の分析が非常に重要です。例えば、当社のWEBサービスのFAQメンテナンスでは、汎用性の高い回答を用意し、0件回答率とミスマッチの原因を分析しています。これにより、顧客満足度の向上を図ることができます。また、掛け合わせたデータを用いて、NPS(ネットプロモータースコア)の向上方法も模索しています。 実務にどう活かす? これらの知識を実務に活かすことで、FAQの分析やマーケティング施策の改善に役立てていきたいと考えています。

データ・アナリティクス入門

仮説検証で見つける成長のヒント

どう仮説を練る? 前職で教えられた問題解決の手法は、実践する機会が十分にありませんでした。仮説を立てる際、まずは現状把握が最も重要であることを再認識しています。一つの仮説に直感的にたどり着くことはありますが、そこに固執せず、ほかの可能性も考慮した複数の仮説を検討することが、根拠のある仮説を生み出すポイントだと感じています。 検証の切り口は? 動画の一例で「仮説と検証を繰り返す」という考え方が大変印象に残りました。これまでにも同様の手法を試みたことはありましたが、せいぜい数回で終わってしまい、検証の繰り返しが十分ではありませんでした。そこで、自分自身の検証と例で示された検証方法との違い、たとえばアプローチの切り口などについて、改めて考えてみることにしました。 枠組みの意外性は? フレームワークに基づいて検証する方法も、抜け漏れのない仮説を構築できる可能性を秘めています。フレームワークを利用することで、新たな発想や類推が生まれることが期待できる一方、自由な発想では偏りが生じやすく、適切な仮説検証が難しいと感じています。 時間がかかる理由は? また、他の社員と比べて明らかに時間を要している業務があります。正直なところ、その業務が自分に合っていない、あるいは心理的に好ましくないという言い訳をしてしまっていました。しかし、他者との比較を通じて何が原因なのかを見極め、行動に入る前の準備段階に問題がないか、あるいは結論から逆算したアプローチができているかを、仮説の検証とシミュレーションで実際に検証しているところです。 取り組みは十分? これらの対策は現在進行中です。現状を正確に把握し、問題点を見極めた上で、重要な局面で目指すべき状態や、そもそもやるべきことが実施できているかを確認しています。業務は忙しく時間的制約もありますが、抜け漏れがないか、逆算して工程を検証する取り組みを並行して行うことで、苦手な業務の改善につなげたいと考えています。もしうまくいかなかった場合は、さらなる仮説を立てて改善に取り組んでいくつもりです。

戦略思考入門

選択と捨てる勇気で生み出す価値

戦略の選択は? 戦略における選択、つまり「捨てる」ことについて、ITベンダーの営業マンシミュレーションで学びました。個人のリソースには限りがあるため、何をやるか、何を捨てるかの優先順位を付けることが重要だと再確認しました。 判断の軸は? 惰性で業務を進めるのではなく、しっかりとした判断軸を持ち、それに基づいて考える必要があります。優先順位を付ける方法として、定量的なエビデンスに基づいた考え方に加え、ROI(投資対効果)を考慮することも大切であることを新たに認識しました。 視野を広げる? また、個人的な視点だけでは見落としがあるかもしれず、全体を俯瞰できない可能性があります。このため、集合知を活用し、他者と意見交換や相談を行うことが重要だと感じました。 新たな気づきは? 動画で得たその他の気づきとしては、捨てることが顧客の利便性を増す場合があること、惰性に流されないこと、新参者の意見を聞くこと、餅は餅屋に任せることなどがあります。特に、垂直統合からの脱却や外注の活用について学びました。 業務の見直しは? 現在の職務では、効率化・高品質化を中心に取り組んでおり、取捨選択をある程度行っていると認識しています。しかし、実際に引き受ける業務には無駄やムラが含まれている可能性があります。これを選別し、より良い処理方法を見つけるために、今回学んだことを活かしたいと感じました。ただし、人間との関係も大切なので、単に定量的な結果や事実を伝えるだけでなく、依頼者の心情に寄り添った対応が重要だとも感じました。 引き算の意味は? 既存業務や新規業務に対して、足し算だけでなく引き算の視点を持つことを意識します。捨てる選択をしてこなかったので、組織としても個人としても抵抗を感じるかもしれませんが、定量的な数値結果や俯瞰的な視野を持ち、情報共有や提案方法を模索していきます。これらを考慮して、同僚や上司に対して恐れず提案する勇気を持ち続けたいと思います。「それ、無くても困らないのでは?」という問いを自分に向けていこうと思います。

アカウンティング入門

無借金経営の光と影を探る

B/Sから見える経営の違いは? B/Sから、資金の調達方法や運用方法によりビジネスモデルの違いが浮き彫りになることを学びました。例えば、無借金経営の場合、借入金や利息の支払いがないため一定の安心感はあるものの、十分な利益が上がらないと資金繰りが悪化し、次の成長戦略への投資が制限されるリスクがあると理解しました。(具体例として、広告宣伝費やメニュー開発費などが挙げられます。) 営業サイクルはどう理解? また、営業サイクルについては、「仕入→製造→在庫→販売→回収」という一連の流れを再認識し、企業経営における基礎としての重要性を感じました。さらに、業種によって流動資産と固定資産の比率が異なるなど、企業ごとのビジネスモデルに基づく資産の配分の違いも理解できました。 B/Sの違いをどう捉える? 総評として、B/Sを通じた資金調達と運用の違いの理解は非常に有益であり、無借金経営のメリットとデメリットを考慮する視点が印象的でした。また、異なる業種間でのB/Sの違いを具体的に考えることで、ビジネスモデルへの理解が一層深まったと感じています。 無借金経営のリスクは? 今後は、無借金経営における成長戦略の制約をどのようにリスク緩和していくか、また、流動資産と固定資産の割合がビジネスにどのような影響を与えているかについて、さらに詳細な分析を進めたいと考えています。 新規事業計画をどう策定? 新規事業戦略においては、コストや利益構造、資金調達方法について仮説を立て、しっかりとした事業計画を策定することが重要です。どこに資金を投入し、どこで費用を抑えるべきかを明確にし、場合によっては事業構造の見直しや撤退も検討する必要があります。 収益性向上の対策は? まずは現状の把握を行い、その上でコストや利益構造の見直しを実施し、収益性の高いビジネスモデルの構築を目指します。具体的には、ステークホルダーとの業務分担や売上分配率の調整、社内のマンパワーと外注費のバランス、さらにはスキームや手数料の見直しを、今期中に実行する計画です。

データ・アナリティクス入門

数字とグラフで見える成長

比較や仮説の意義に迫る? 本教材では、比較や仮説思考の重要性を改めて確認しました。大量のデータを扱う際、数字化しグラフなどで可視化することで、情報がより明確に把握できることが示されています。 代表値はどう選ぶ? 代表値として、単純平均、荷重平均、幾何平均、そして中央値が挙げられました。それぞれ、状況に応じた使い分けが必要です。たとえば、ばらつきが大きい場合や外れ値がある場合には中央値が適している一方、成長率などの変化割合を捉えるためには幾何平均が有効です。 標準偏差を理解する? また、データのばらつきを理解するためには、標準偏差が重要な指標となります。標準偏差は、平均値との差の二乗和の平均の平方根として計算され、数値が小さいと密集、大きいとばらつきがあることがわかります。正規分布の場合、平均値から標準偏差の2倍以内に約95%のデータが収まるという2SDルールも、実感としての起こりにくさの目安となります。 グラフの効果は何? まとめとして、代表値とばらつきを用いてデータの特性を把握し、グラフなどの可視化を利用すると、非常にわかりやすく情報を整理できることが強調されていました。具体例を用いた説明は非常に効果的で、内容が実践的に応用できる点も評価されます。 荷重平均の活用は? さらに、データ可視化の具体的な利点や、実際の場面で荷重平均をどのように活用するかについて、さらに考えを深める問いが提示されています。これにより、自らの分析手法を実践的に応用する視点が求められています。 実務でどう活かす? 最後に、実務への応用例として、メンバーの時間外労働の管理が取り上げられました。労働時間が所定の範囲内に収まるよう、グラフを用いて傾向を把握する方法や、外れ値がある場合に特定の商品のデータを除外して全体の傾向を見る手法が紹介されました。また、エクセルを活用して各メンバーの代表値やばらつきを算出し、分析の特性に応じた手法が使われているかを確認することで、より実践的なデータ分析支援に繋げる取り組みが示唆されています。

データ・アナリティクス入門

データ活用で広がる戦略の可能性

平均概念は何を表す? これまで何となく使用していた「平均」の概念が、データの代表値を示すためのものだと理解が深まりました。代表値の考え方を知ったことにより、平均以外のデータも考慮し、データの分布(ばらつき)に着目することで、より効果的な分析ができる可能性が広がりました。 データ比較はなぜ大切? データ分析においては、他のデータと比較することでその意味合いを引き出すことが重要です。そのため、データの特徴を一つの数字に集約したり、グラフなどのビジュアル化によって視覚的に捉えたりする方法があります。 中央値とばらつきの違いは? 数字の特徴を捉える手段には、データの中心を示す方法とデータのばらつきを示す方法の2つがあります。データの中心を示す方法としては、単純平均、加重平均、幾何平均、中央値があり、ばらつきを示す方法としては、標準偏差が用いられます。データのばらつきは主に正規分布に従い、正規分布では標準偏差の2倍の範囲に全体の95%が収まるという2SDルールがあることが分かっています。 なぜグラフが効果的? データ分析のアプローチには、グラフ、数字、数式があります。特に、グラフはビジュアル化による情報伝達の手段として有効です。 どう鋭い問いを引き出す? これまでのデータ活用では単純平均や加重平均が主に使われてきましたが、幾何平均や中央値、標準偏差を活用することで、より鋭い問いや回答が得られる可能性があります。特に、データのばらつきを分析することで、分布ごとの傾向が明らかになり、自分の製品原価分析に応用できる予感があります。 レポートで戦略を描く? 現在、私は上半期の業績分析のレポートにおいて、売値と製造原価の比率や製品1つあたりの売上単価の分析を進めています。これまでのように平均のみを算出するのではなく、ヒストグラムなどを用いてデータのばらつきを考慮することで、価格帯ごとの相関関係も取り入れたレポートを作成し、再来週までに提出する予定です。このレポートが今後の販売戦略立案に貢献することを期待しています。

リーダーシップ・キャリアビジョン入門

自律と挑戦が描く組織未来像

エンパワメントって何? エンパワメントについて学んだことは、組織の目標達成のために、メンバー自身が自律的に行動できる力を育む技術であるという点です。押しつけや単なる指示ではなく、育成の観点からメンバーを支援することで、彼ら自身の成長につながり、結果として組織全体のレベルアップにも寄与すると感じました。また、各メンバーのレベルアップに繋がる業務内容の設定や、効果的なコミュニケーションの重要性についても改めて学び、組織の成長にはメンバー個々の成長が不可欠であると実感しました。 目標はどう意味づけ? 目標設定に関しては、目標達成後にどのようなレベルに到達しているか、また達成によってどのような状態が実現できるかを明示することが重要だと感じました。以前は単に組織の課題に対する数値目標を示すだけでしたが、目標の意義や、本人にとってのメリットを具体的に示すことで、やる気や意欲を引き出す効果があると考えています。 よい目標の作り方は? また、よい目標を設定するためには「意義」「具体性」「定量性」「挑戦」という4つの軸を意識する必要があります。これにより、目標に込められた意義が明確になり、本人のやる気や成長へとつながる目標設定ができるようになると期待しています。 組織強化の方法は? 今後は、目標とその意義を明確にすることで、強い組織づくりを目指していきたいと考えています。現在は所属する部署を中心に取り組んでいますが、将来的には部全体へと視野を広げ、関わりの少ないメンバーも対象としていくことで、全体の課題解決や組織力の向上に貢献できると信じています。マネージャーとしてだけではなく、リーダーとしてチームをけん引する視点を大切にしていきたいと思います。 面談で何を確認? 今年度の目標設定はすでに終了していますが、改めて組織メンバーとの個別面談を通じ、各自の目標について丁寧に説明し直す予定です。特に、「意義」と「挑戦」に重点を置くことで、各メンバー自身の成長を促し、組織全体の向上につながるよう努めていきたいと考えています。

データ・アナリティクス入門

分析のアプローチで見えた新たな視点

分析とは何を指す? 分析とは「比較」のことを指します。現状を詳細に比較したり、物事を比較することで、解像度の高い理解や把握が得られます。 グラフや数値の算出方法を理解 今回の学習を通じて、具体的な分析アプローチとしてグラフや数値の算出方法について理解しました。データを算出する際には、代表的な数値(代表値)とデータの散らばり(分布)に分け、それぞれに具体的な手法が用いられます。代表値の例としては、単純平均、加重平均、幾何平均、中央値がありますが、特に幾何平均を用いた売り上げ予測の立て方が印象に残りました。また、分布の例としては2SDルールが紹介され、大枠の範囲を考慮した上で平均値を予想する方法が理解できました。 仕事における分析意識の向上をどう図る? ①分析のアプローチに対する仕事の意識 「分析 = プロセス × 視点 × アプローチ」という基本的な考え方を念頭に置き、これらに漏れがないように資料を作成したり、発言するといった意識を持ち続けます。 ②分析のアプローチに対する業務の行動 現状では単純平均を用いて比較することが多いですが、今後は分布やグラフを用いることで新たな気づきを得られるように努めます。 アプローチ方法をどう定着させる? ⓪分析全体の把握およびアプローチ方法の定着化 学習した「分析 = プロセス × 視点 × アプローチ」について、自分の言葉でまとめました。まずは用語や算出方法を含めて暗記し、アプローチ方法を定着させます。 SNS戦略での分析の改善策は? ①SNS戦略での分析の実施 現状では数値を取って把握することが主体で、十分な分析ができていません。今後は、定義に基づいた分析を実施し、比較が必要な場合には代表値や分布を用いて進めます。 データ分析の評価をどう行う? ②データ分析に関する評価 業務上、データから戦略や仮説を立てることが多いため、データに対して視点を持ったりアプローチを探したりすることで、新たな気づきを見つけ、それを共有します。

「方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right