クリティカルシンキング入門

分析の視点が変える売上の未来

情報をどう分解? 数字の見方や分け方を工夫することで、異なる分析結果が導き出されたり、隠れていた情報が見えてくることがあります。情報を正確に分解するための手法として、MECE(Mutually Exclusive, Collectively Exhaustive)という考え方があります。情報を層別、変数、プロセスなどの視点から漏れなくダブりなく分解することで、新たな洞察を得ることができます。 売上分析はどう? この方法は販売関連の数値分析においても非常に有用です。例えば、製品の売上分析を行う際には、売上高を売上別、業種別、チャネル別、機能別といった多様な視点で分析することが可能です。これにより、情報の分解や視点の変化が分析に役立つと感じました。 原因分析はどう? 今後、売上情報を分析する際には、MECEを常に意識し、情報の切り方によって得られる洞察の違いを意識しつつ業務を遂行していきます。特に、売上が下がっている場合、その原因を分析する際には、どのポイントに課題があるのかを細かく見つめ、解決策を模索する努力をしていきたいと思います。

クリティカルシンキング入門

偏りを超えて挑む健康イベントづくり

どう多角的に考える? 自分の考え方が偏ってしまうことが多いと自覚しているため、あらゆる方面から物事を見られるように見識を深めたいと考えています。問題解決にあたっては、周囲の意見に流されやすくぶれてしまうことがありました。しかし、今後は他人の意見に流されずに、問題を一つずつ分解して課題を明確にしていきたいです。 どの企画が魅力的? 健康課題を明確にし、健康意識を高めるイベントを企画するには、年齢や性別だけでなく、部署の結束度合いや地域性、キーパーソンの有無などを調査し、何を求めているのかをしっかり把握することが重要です。相手に見やすく伝わりやすい資料を準備して説明し、一人でも多くの参加者を募り、楽しめる企画を作り上げたいと考えています。 分析で何を知る? 健康診断の結果を分析し、何が課題なのかを明確にした上で、部署の傾向を把握し、一人でも多く参加でき楽しめる企画を検討します。イベント企画の説明には、興味を引くような資料を作成し、普段からコミュニケーションを大切にして、会社や組合に協賛を得られるように、一緒に盛り上げられる環境を整えていきたいです。

データ・アナリティクス入門

数字に潜む新発見と未来への一歩

平均値の使い方は? 単純平均だけで判断すると、外れ値の影響でデータの見誤りが発生する可能性があることに気づきました。これに対して、加重平均や幾何平均についてはこれまで自分自身で使った経験がなく、今後習得していきたいと考えています。これまで、適材適所の数値の出し方をあまり意識していなかったという反省もあります。 データ分析はどう? セミナーの申込者数やWebからのコンバージョンの分析において、年商別や案件化金額などのデータを、散らばりや加重平均、幾何平均を取り入れて比較分析したいと考えています。具体的には、同じソリューションのセミナー同士や異なるソリューション間の比較、時期を分けた比較、Webとセミナーでのリードの比較など、さまざまな切り口で分析を行いたいと思います。 比較検討の進め方は? まずは、参加者が多く、分析しやすい直近のセミナーを対象に、年商別の申込者数や過去のセミナー参加数を、前回同じテーマで実施したセミナーと比較してどのような変化があるかを検討する予定です。その結果を踏まえ、他のソリューションのセミナー分析にも展開していく狙いです。

アカウンティング入門

イメージと数字で探る企業の真実

どうして企業は違う? 業種や企業の考え方によって、適切な範囲内で変化するという点が一番の学びでした。特にオリエンタルランドでは、価値創出のために人件費が売上原価と位置付けられている点が非常に新鮮に感じられました。また、すぐに財務諸表を見るのではなく、まずその企業の特性を思い浮かべた上で財務諸表をイメージし、実際の数字と照らし合わせることで、自分なりの仮説が見えてくる点に学びの深さを感じました。 業務で何を実践? 今後は、①自分の担当業務においてこの手法を活用したり、日経新聞などで気になる企業について詳細に調査する際に役立てたいと考えています。②また、自社業務で様々な企業の財務諸表を分析する機会に備え、その知識をしっかりと身につけたいと思います。 試行はどう進める? 具体的には、まずある企業を選び、その企業の財務諸表を自分なりに予想します。その上で実際の数値を確認し、仮説の検証を行うというサイクルを繰り返していく予定です。その結果を単に自分の中に留めるのではなく、何かしらの形でアウトプットすることでより実践的な学びに結び付けたいと考えています。

データ・アナリティクス入門

仮説が拓くビジネスの未来

仮説はどんな意味? ビジネスにおける仮説という視点と、フレームワークを活用した論点整理の方法を学びました。仮説を持つことで、仕事に取り組む姿勢が変わり、対峙する問題に対する説得力が増すとともに、ビジネス全体のスピードと精度の向上につながることが理解できました。 どう書き出す? また、仮説を立てる際には、単なる思い込みではなく、まずフレームワークに沿って書き出す方法を試してみようと思います。もし思い込みのまま仮説に基づいて行動を始めると、後に仮説と異なる検証が有効であった場合、その検証を継続することが難しくなる恐れがあります。 現状把握の理由は? さらに、仮説設定に入る前の現状把握や定義のすり合わせにも十分な時間を割く重要性を感じました。これにより、データの項目や取得環境などにも注意を払い、より確かな仮説設定ができると考えています。 仮説確保はなぜ? チームでプロジェクトを進める際には、結果以上に良い仮説設定が成功に直結することを改めて認識しました。そのため、検証プロセスに入る前に、仮説設定に十分な時間を確保するよう努めたいと思います。

データ・アナリティクス入門

実践が磨くデータ分析の極意

分析の目的は? データ分析の基本は、正確な手法の選択とアウトプットの工夫にあります。まずは分析の目的をはっきりさせ、整理すべき具体的な要素をまとめることで、比較対象や評価基準を設定することが重要です。また、グラフの種類やデータの加工など、第三者が見ても客観的な判断ができるような見せ方を工夫する点にも留意しました。 マネージャーとの調整は? ヘルスケア領域のコンサルティング業務においては、実際に分析に取り掛かる前に、マネージャーとの認識統一が欠かせません。分析する項目の選定や、加工の必要性、さらには比較対象や基準、定義の設定について事前の調整を行うことで、適切な手法を選択できると実感しました。 数字の示唆は? また、定量的なデータ分析は単に数値を示すだけでなく、その数値からどのような示唆を得るかが大切です。データ分析の結果をマネージャーに提出する前に、伝えたいメッセージを明確にすることの重要性を理解し、背景や目的の整理、現状分析、課題抽出、解決策という業務プロセス全体の中で、正しいデータ分析方法とそのアウトプットが不可欠であると再認識しました。

クリティカルシンキング入門

伝える力で広がる未来

情報整理はどうする? データのまとめ方や見せ方は、相手への理解を促進する一方で、誤解の原因にもなり得ます。文章に強調を重ねすぎると冗長になり、結果として読みづらくなることもあります。また、文字の色ひとつでも読み手の印象が大きく変わるため、注意が必要です。大切なのは、個性を出すことではなく、一般的に理解しやすい論理的な文章や図解を構成できるかどうかです。 プレゼンはどう見極め? たとえば、パワーポイントを活用したプレゼンテーションや、エクセルを用いた報告・連絡・相談、メール文章作成など、さまざまな場面で役立つ内容だと感じました。どの場面でも、表現が誤解を生まないかどうかを常に意識することが重要です。何気ない色使いが、伝えたい内容と逆の理解を与える可能性もあるからです。 伝達内容は正確? まずは、自分が何を伝えたいのかを明確にすることが不可欠です。図やグラフ、文字の強調は、あくまで伝えたい内容を補強するための要素に過ぎません。完成したら、上司や同僚に確認してもらい、伝えたいことが正しく伝わっているかどうかをチェックすることが大切だと実感しました。

データ・アナリティクス入門

データが導く未来へのビジネス突破口

データ取得の方法をどう改善する? 複数の仮説を立て、それを検証するためのデータを取得することについて学びました。これまでは、既存のデータを用いて検証することが多く、完全な結果ではないと感じることがありました。今後は、仮説の精度を向上させるために、データの取得方法を工夫し、再構築していきたいと思います。 ニーズ調査で次に向かうべきは? また、担当するマーケットのニーズ調査についても学びました。従来の一般的な仮説からもう一歩踏み込み、「なぜ、なり手不足になるのか」という問いに対する仮説を立てて検証し、その結果に基づいて課題を解消するようなサービス案を考えることが重要だと認識しました。 ワーキンググループの成功へは? 現在、社内で行っているワーキンググループでこれを実践しています。ニーズの検証までは完了していますが、まだ具体的なビジネスには結びついていません。「Q2」を実践することで、早期に実際のビジネスへと発展させたいと考えています。 仮説とデータ活用の展望 今後も、仮説の立て方やデータの取り扱い方を工夫し、実務に活かしていきたいです。

データ・アナリティクス入門

仮説検証で未来を切り拓く一歩

なぜ仮説検証が必要? 今回の振り返りを通じ、まず仮説検証の重要性を再認識しました。数字を単に眺めるだけではなく、要素ごとに分解し、さまざまな仮説を立てながらデータを検証のツールとして活用する方法が有効だと感じました。また、比較を意識した分析を行うために、率や代表値を用いる手法が非常に効果的であるという考えにも改めて気づかされました。 実績把握で何が変わる? これらの学びは、月次実績の把握や事業計画の検討にも応用できます。過去の実績に基づいて仮説を立て、検証を重ねることで、次年度への具体的な打ち手が明確になっていくと実感しました。前年同月比や前年同期比を活用する手法も、現業務において引き続き継続し、より深い分析に結びつけたいと考えています。 復習と共有で成長は? また、ナノ単科の画面が見られなくなる前に、回帰分析や代表値の部分をしっかり復習し、自分の知識として定着させることが必要だと感じました。さらに、アウトプットの重要性を痛感したため、自ら立てた仮説や検証結果を周囲と共有し、意見を取り入れることで自身の成長を一層促進していきたいと思います。

クリティカルシンキング入門

予算作成を成功させるMECE分析のコツ

分析と成功の考え方は? 「分かる」は「分ける」と同じ意味だということが重要です。分析の結果、顕著な傾向が見られない場合でも、それは失敗ではなく、むしろ傾向がないことが確認できた成功です。特に、MECE(漏れなくダブりなく)を意識し、分析の切り口を明確にすることが大切です。 来期に向けた予算分析法 来期の予算作成に向けては、今期のデータをMECEを活用して分析する予定です。具体的には、四半期ごとの傾向、各勘定項目ごとの傾向、各支店ごと、固定費用と変動費用、そして担当者ごとに分けて分析します。また、予算作成の時期を待たず、今から準備を進めることも可能だと感じました。 代替案とスムーズな承認 現状を追う目線とは異なる視点でデータを見て、必要なことを考えます。どのような資料を作成すれば予算承認が通りやすく、承認者が納得しやすいかを考慮します。さらに、他の国や会社全体の状況を把握し、予算取得のために想定される壁があるかどうかを調査し、事前対策やプランBを考えておきます。承認後のフローも整理し、次のアクションにスムーズにつなげられるよう準備を進めます。

戦略思考入門

差別化戦略で広がる可能性

差別化の出発点は何? 差別化を図る際は、まず「競合他社の幅広さ」や「ターゲットとなる顧客」といった前提条件を明確にすることの重要性を再認識しました。大きな差別化戦略であるコストリーダーシップを必ずしも実践する必要はないかもしれませんが、差別化や集中戦略は自社の戦略に十分応用できると感じています。 業界戦略はどう考える? 自身の業界に当てはめると、3つの戦略やVRIO分析といった枠組みは、現在の自分の立場よりも会社全体の戦略部や経営層に近い組織で判断されている印象です。単に方向性を示されるだけでなく、その判断に至る分析結果が説明されることで、より納得しやすくなります。なお、組織単位でVRIO分析を行った場合、その組織の強みは見えても、会社全体の最適な解決策とはならない点には注意が必要です。 どのような工夫がある? また、差別化を考える際に、先に答えを思い浮かべ、その答えを補強するために優位な競合や顧客情報を並べる傾向があります。経験則から出る直感自体は否定しませんが、視野が狭くならないよう、どのように工夫しているのかを考える必要を感じました。

データ・アナリティクス入門

小さな比較が大きな決断へ

分析の目的は何? 分析は、対象の比較を通して最終的な意思決定に役立てるためのプロセスです。まず、分析の目的をはっきりと定めることが大切です。その際、必要な要素の整理を行い、どのような切り口で分析を進めるかを考えます。 比較とグラフはどう? 具体的には、各要素を同じ尺度で比較できるよう配慮しながら、縦棒グラフや横棒グラフの使い分けに注意を払い、差異を視覚的に把握しやすい構成を目指します。数値データだけでなく、感覚的なスコアも、別の切り口を用いることで定量的に表現できる点が重要です。 柔軟な検討は必要? また、データ分析の依頼を受けた際は、まず目的に関する詳細なヒアリングを行い、分析に必要な各要素の分解や整理を丁寧に実施します。目の前のデータに固執することなく、柔軟な視点から検討することが求められます。 結果のまとめは? 最終的な分析結果のまとめにおいては、伝えたいメッセージに最も適したグラフやダッシュボードを選択することが鍵となります。こうした取り組みが、分析時に生じる躓きや失敗を解決するためのディスカッションに繋がっていくでしょう。

「結果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right