リーダーシップ・キャリアビジョン入門

経験が織る未来への道しるべ

リーダーの目標は何? リーダーや上司が自分のキャリアにおいて明確な目標を持っていると、人は自然とその姿勢に引かれるという考えに大いに共感しました。また、キャリア形成は決して一直線ではなく、さまざまな経験や試練を経て形作られていくものだという「キャリアサバイバル」の考え方も納得できるものでした。この学びを通じて、自分自身のキャリアについて再考し、今後の方向性をより具体的に描いていこうという意識が強まりました。 演習で何を感じた? 総合演習では、これまでに学んだ内容の中で忘れていた項目を思い出すことができ、知識の整理に役立ちました。演習を進める中で、キャリアは紆余曲折を経ながらも形成されていくと実感し、そのことを部下や後輩に伝えていきたいと思いました。実際、かつての上司からは、最初から今のポジションを目指していたわけではなく、経験を積み重ねた結果として現状に辿り着いたという話を聞いており、その事実が自分自身の考え方にも影響を与えています。 大切な価値観は何? 私自身は現時点で具体的なキャリアゴールを持っているわけではなく、漠然とした目標を意識している程度ですが、今回の演習を通じて、自分の大事にしている価値観を確認することができました。この価値観は、社会人になってから大きく変わっていないと実感しており、今後のキャリア形成の基盤として活かしていきたいと考えています。やるべきことや求められる役割が変化していく中で、自分の強みや信念をしっかりと見極め、その上で最終的なキャリアの形を描いていくことが今の課題だと思いました。 キャリアアンカーの割合は? また、部下を持たれている方の中で、明確なキャリアアンカーを持っている割合がどの程度なのかについても非常に興味があります。今後の学びを通して、より具体的な状況や事例について知り、自分の考えをさらに深めていければと思います。

リーダーシップ・キャリアビジョン入門

振り返りが導く新たな自分

振り返りの大切さは? 今回の学びでは、実際の経験をもとに成長を促す方法やモチベーションの維持・向上について理解を深めることができました。経験から学ぶプロセスでは、まず振り返りを習慣化することが重要であると実感しました。実際に取り組んだタスクを振り返ることで、目指すべき姿とのギャップを確認し、メンバー自身が課題を認識する土台を整えることができるためです。事実に基づいた評価や、明確な基準に沿った成功事例と改善点の双方を伝えるアプローチが、より実践的な学びにつながると思います。 仕事任せは効果的? また、メンバーに仕事を任せる際には、執行責任を持たせリーダーによる干渉を最小限に抑えることで、成長の機会を十分に提供できると感じました。不測の事態への迅速な対応と、組織全体での改善策の検討も重要なポイントです。こうした経験を通して、メンバーが自らの力で気づきを得て、主体的な行動へとつなげる環境作りの大切さを学びました。 モチベーションの鍵は? さらに、モチベーションに関しては、働く理由と働く環境の両面から考えることが必要だと実感しました。金銭的報酬や社会的評価、自己実現の場の提供など、多角的な視点が組み合わさることで、より一人ひとりに適した動機づけが可能になります。理論として取り上げられる各モデルを参考にしながら、相手を尊重し、適正な目標設定や信頼関係の構築を継続的に行うことの重要性を再確認しました。 タスク運用の実感は? 実際のタスク運用では、まずタスクの背景、目的、期限、サポート範囲を明確にし、初めての経験を積む機会として具体的な行動を促すステップを実践しました。タスクの進行状況を確認しながら、適宜振り返りの機会を設け、メンバーが自らの言葉で気づきを表現できるよう導いた結果、若手社員が一人称で考え、主体的な学びを得るプロセスがよりスムーズに進むと感じています。

データ・アナリティクス入門

数字が照らす学びの道

どうやって特徴を捉える? 大量データを比較する方法として、まずデータの特徴をひとつの数字に集約し、グラフ化して視覚的に把握する手法を学びました。これにより、数値としての評価だけでなく、データの散らばりや傾向も同時に捉えることが可能になります。 平均値の違いを知る? 平均値や中央値を確認するために、単純平均、加重平均、幾何平均、そして中央値の各手法を比較しました。今まで単純平均や加重平均を主に用いていたため、このうち幾何平均と中央値の手順が分かっていなかったために、業務上物足りなさを感じていた点に気づくことができました。 分布の形はどう判断? また、データの平均的な分布をグラフ化することで、これまで感覚的に捉えていたデータの散らばりを、標準偏差などの具体的な数字として表現する必要性を認識しました。こうした数値化は、データのばらつきが大きいのか小さいのかを明確に捉える上で非常に有効です。 利用状況をどう見る? さらに、提供しているサービスの利用状況を単なる数の集計として週次報告している現状に対して、まだ活用できていないデータの中に、利用者の属性や利用時間帯などの詳細な情報が含まれているのではないかと考えるようになりました。これらを分析することで、サービスの改善点や利用者の利便性向上につながる提案が可能になると感じています。同様に、ライセンスやクラウドの予算についても、感覚的な予測に頼らずデータに基づいた数値をフィードバックすることで、より説得力のある結果に結びつくと考えています。 予測結果は合致? また、1年前に作成した将来のクラウド利用予測と現状を比較するタイミングを迎えたことから、その分析を活用し、利用していなかったデータも含めてさらに掘り下げていこうと考えています。あわせて、学習用の動画を見直すことで、自分自身の理解をより一層深める予定です。

クリティカルシンキング入門

数字の工夫で見つけた新発見の旅

数字活用のコツは? 数字を活用するためには、「加工の仕方」、「分け方の工夫」、「分解の留意点」を意識することが重要です。業務では数値を頻繁に使用しますが、「加工の仕方」には特に問題を感じていません。ただ、「分け方の工夫」に関しては、機械的に分けることが多かったことに気づきました。機械的に分ける場合と、柔軟に分けることで異なるグラフ結果が得られるという点は非常に新鮮でした。 上司へどう伝える? 上司へ説明する際には、数字がハイレベルで理解できることが重要です。そのため、今後は数字の分け方に注目し、客観的でわかりやすい資料作成に努めたいです。「分解の留意点」においては、MECEを活用し、全体をモレなくダブりなく定義し、分析することを心がけます。一度出した回答も再検証し、常に正しいかを確認することで、最短で正しい回答を導き出したいと思います。回答を出すとすぐに実践してしまう癖があるので、注意する必要があります。 プレゼンの工夫は? 「分け方の工夫」は、上司へのプレゼンテーションや報告にすぐに活用できます。具体的には、KPIやプロジェクト進捗において、達成に必要なものやすべきことを数値で分解し、機械的ではなく柔軟にグラフ化することで、視覚的にわかりやすく解決策を見つけやすくします。また、今週学んだ内容は業務全般に活用できるため、有意義でした。忘れないように反復して身につけたいです。 資料作成のポイントは? 現在準備しているKPIやプロジェクト進捗報告のプレゼン資料には、特に「MECE」、「分け方の工夫」、「分解の留意点」を取り入れたいです。重複する部分もありますが、MECEを用いて層別分解、変数分解、プロセス分解を試み、新たな発見をし、異なるグラフを用いることで説得力を高めたいと思います。回答の検証も行い、より効果的なプレゼンテーションにしたいと考えています。

データ・アナリティクス入門

データが照らす学びの軌跡

意思決定はどのように? ジレンマに直面した際の意思決定プロセスについて、具体的な手順を学びました。仮説を立て、その仮説に基づいてデータを収集し、最終的な結論につなげる基本的なプロセスが身についてきたと実感しています。特に、ある教育機関で見られた事例―忙しさから採用候補者の面接時間が確保できない一方で、面接を行わなければ生徒からの不満が蓄積し、経営に悪影響を及ぼす可能性がある―は、自分がスケジュールを詰め込みすぎている点に気づかされる貴重な経験となりました。講義の冒頭で「データ分析においては、何を目的とするかが極めて重要である」という話を聞いて、改めてその本質に立ち返る機会となりました。 人口減少策をどう見る? 人口減少対策においては、何をもって効果とするか判断するのが難しく、一見、あらゆる施策を試すような印象を受けますが、実際にはリソースが限られているため、何を課題として捉えるかが大切です。今一度、どのような仮説を立て、どんな事業を展開し、結果をどのように検証するかという一連のプロセスについて考え直す必要があると感じています。最近、ある地域の各自治体が実施する政策の一部を説明変数として、UIJターンに影響を与える要因を分析した論文に触れる機会がありました。施策分野ごとに縦割りで考えがちな現状に対して、異なる組み合わせが流入人口に与える影響を示すデータに、非常に新たな視点を得ることができました。 データ調査の下準備は? 自力で高度な分析を行うには限界があるものの、まずは地域内の市町村が実施している政策を類型化し、その一覧を作成するなど、データによる調査の下準備が可能だと考えています。具体的には、関係人口や交流人口を創出する施策、雇用創出に関する施策、住居に関する施策、さらに子どもや子育て支援に関する施策について整理し、評価データをまとめていく予定です。

データ・アナリティクス入門

条件を揃えて見える学びの真実

正しい比較はどうする? 「Apple to Apple」という考え方が印象に残っています。同じ条件に揃えて比較しなければ、意味がなく、データを正しく読み解くために非常に重要だと感じました。頭では理解していても、経験やクリティカルシンキングが不足していると、ついつい情報を鵜呑みにしてしまう危険性があります。 企画と集客の関係は? 私は学生向けのオンラインイベントの企画と集客を担当しています。まず、企画と集客は表裏一体であり、学生の行動分析が重要です。具体的には、どの時期にどのような申込行動があるのか、参加後にはどのような行動に繋がっているのかを解析し、その結果をもとに企画の対象、開催時期、内容を決定しています。 認知広げる秘策は? さらに、集客においては「いつ、何を、どのように」告知して認知を広げ、申込を促し、開催前に離脱を防ぐ対策まで考えなければなりません。状況が常に変化する中で、申込状況をリアルタイムに把握し、必要な打ち手の変更を迅速に行うことが求められます。企画の効果が集客に影響するため、両者は密接に連携させる必要があります。 データ整備は進んでる? 現状では、まずデータの整備が最優先事項です。折り返し地点まで進めていますが、依然として地道な作業が続いています。正直なところ、「会社が整えておくべきだ」という愚痴も出るほどですが、しっかりと整備を進めなければ本質的な分析はできません。今後も引き続き取り組んでいきます。 管理方法はどうなってる? また、データの記録や管理、分析を効果的に行うためには、エクセルフォーマットの整備も欠かせません。どのようにすれば見やすく、管理しやすく、分析しやすいかを、部署メンバーと意見を合わせながら調整を進めています。この作業は地道ですが、本質的なデータ分析の議論に繋がっているため、継続して進めていく覚悟です。

クリティカルシンキング入門

小さな視点、大きな発見

データはどう見える? 一次データだけでは見えてこない傾向があるため、データをさらに細かく分け、グラフなどのビジュアル資料で確認することが重要です。 切り口の意味は? 刻み幅や意味のある切り口に基づく分け方を意識し、仮説を立てながらデータを整理することで、分け方によって異なる結論が導かれる点に注意が必要です。 全体像の正確把握は? 分解して検討した結果、特徴的な傾向が浮かび上がったとしても、それが全体を示すものではありません。すぐに結論を出さず、自分自身を疑う姿勢を持ち、思考の制約にとらわれないよう心がけることが求められます。MECEの考え方を活用しながら、全体を部分に分ける階層分解、売上を単価と数量に分ける変数分解、そして業務プロセスごとに分けるプロセス分解の手法を上手に使い分けるとよいでしょう。 分析の焦点は? 例えば、変数分解を用いてメンバーそれぞれの売上傾向を分析する際には、まず優れた成績の例と比較して単価や数量のどちらに課題があるかを明確にします。単価に問題がある場合は、コンタクト先を階層分解してどの層へのアプローチが不足しているのかを検討し、販売数量に問題がある場合は、プロセス分解を通じてどの業務プロセスに時間がかかっているのかや課題が潜んでいるのかを明確にすることが効果的です。 販売戦略の再考は? また、商品販売では、階層分解を活用して販売好調な商品の傾向を把握することが重要です。購入者を細かく分けることで、より明確なターゲット層を設定し、戦略の見直しに役立てることができます。 成果と速度の両立は? 実際の業務では、質の高い成果とともにスピードも求められます。トレーニングの積み重ねによって両立が可能だと考えていますが、実際の業務でどのように質とスピードを両立しているか、具体的な方法があればぜひお聞かせいただきたいです。

クリティカルシンキング入門

問いの連鎖が生む未来への一歩

思考はどう鍛える? 知識を思考力に変えるためには、知識のインプット、アウトプット、他者からのフィードバック、そしてその振り返りというサイクルを継続することが必要です。このサイクルを繰り返す以外に、思考力を鍛える手段はないと感じています。 問いは何だろう? 実務の現場では、まず「問いは何か?」という基本的な問いからスタートし、その問いを残すことや共有することが重要です。たとえば、現在何が課題なのかを見極めることは、リーダーにとって最も大きな役割だと考えています。 グラフで効果は? また、数字の力を最大限に引き出すためには、グラフ化するなど視覚的に表現することが効果的です。グラフ化することで、仕事の成果や順位の整理がしやすくなり、目で見て理解できる状況を作り出すことができます。さらに、物事を細かく分解することで、全体の解像度が高まり、適切な分類が可能になると実感しています。 抽象と具体は? 一方で、抽象的な概念と具体的な事例の行き来にはまだ苦労しています。会社目標である「生産性向上」など、抽象的なテーマを具体化できず、言葉にしないと行動に移せず、結果として自分だけでなく周囲も状況を十分に把握できない混乱が生じています。しかし、今後はこの抽象的な問題にもあきらめずに取り組み、改善を図っていきたいと思います。 意見交換で進む? そのために、まずはコミュニケーションを積極的に取ることが大切だと考えています。相手と「問いは何か?」を共有することで、意見交換がスムーズになり、課題の本質が見えやすくなると思います。次に、これまでの取り組みや経験を振り返る時間をもっと確保し、ノートやメモに記録しておくことで、長期的な視点で自己評価を行いたいです。最後に、日々の学習を継続し、新たな知識や情報の獲得に努める姿勢を忘れずに、今後の成長につなげたいと考えています。

戦略思考入門

戦略思考で描く理想の未来

戦略思考はどう始める? 戦略思考とは、理想の自分や得たい結果、なりたい姿を実現するために、明確な目標を設定することです。そのためには、現在地である自分から、目標を達成した自分への道のりを描く必要があります。資源は有限であるため、時間や労力を無駄にしないよう、最速かつ最短で到達する方法を考えることが重要です。つまり、理想の自分を描き、現在の自分に必要なものと不要なものを取捨選択して行動に移すことが戦略思考といえます。 部署の目標はどう決める? 私が所属する部署はバックオフィスです。ここでの目標は新規業務の拡大と新規事業への参入です。業務や事業において目標が明確でないと、何を努力すべきかが分からず、行動に迷うことがあります。どの業務を拡大するのか、どんな事業に参入するのか、細かく決められていないときは、何が必要で不要かを判断しづらくなります。このため、目標を立てることは不可欠であり、それが意識付けや意思決定、そしてモチベーションを支える重要な柱となります。 議論はどう広がる? 個人や部署の目標を設定すると、建設的な議論が生まれ、必要な学習や資源の確保といった様々な思考が展開されます。その結果、チームとして目標に向かって進むための計画を立てることができます。 戦略習慣は何が鍵? 戦略的思考を習慣化し、体得するためには以下の行動を継続することが大切です。まず、仕事やプライベートなど何事もゴールを定める習慣を身につけること。そして、ゴールまでに必要なことや不要なことを分析する習慣を持つことです。分析の結果から最良の計画を立て、実行から得た学びを次回に活かすことも重要です。また、様々な経験を通じて自分の得意・不得意を見極め、独自性を育む自己啓発も必要です。これらを一人で行うのではなく、多様な情報源から得た情報を活用してブラッシュアップを続けることも大切です。

戦略思考入門

戦略的思考で自分を変える学びの旅

戦略的思考とは何か? 戦略的思考について、私はゴールに最短で到達するための判断軸を養う力だと考えていましたが、ライブ授業で様々な考えを聞くことで、深掘りが不足していることを痛感し、学ぶ目的によって答えが変わることを知りました。 4つの視点でアドバイス 演習の中で、特に何をすべきか整理できていない相手に対して、目的、資源、リターン、競合という視点からアドバイスをする話がありました。このように切り口を変えることで相手に新たな気づきを与えることができ、これが具体的な4つの視点として役立つことを学びました。 自分の学びをどう活かす? また、学んだ内容を自分のものにするとは、単なる暗記ではなく、自分が何をできるか、何ができないかを振り返り、それを自分の言葉で説明できる状態にすることだと理解しました。 思考の停滞をどう打破する? 今まで、自分は思考が止まり、本質を理解できていないことが多かったと感じています。例えば、上司から指示された仕事で進捗が滞った時、上司の発言やその背景を再考し、ゴールを明確にすることで、より良い進め方を見つけたことがあります。今回のライブ授業を受け、自らの仕事の進め方を振り返る中で、相手の真意を探れなかった場面があったことを反省しています。そして、相手の考えや思いを確認することで、ゴールに近づく複数の方法があることを改めて理解しました。 アウトプットを重視する理由は? これからはアウトプットを重視していこうと考えています。今回の受講ではアウトプットの機会が多く、他の方々のアウトプットから考え方や言語化の方法など、参考にしたい部分を自分に取り入れるよう心掛けていきます。仕事では全社員が閲覧できるグループウェアに日報を載せていますので、毎日の仕事の結果だけでなく、学んだ内容も積極的にアウトプットしていくようにします。

クリティカルシンキング入門

データ分析の新発見と発想転換の旅

データ分析の工夫は? 今週の講義では、多くの気づきがありました。まず、データ分析においては、単にデータを眺めるだけでなく、少し手を加えることが重要だということです。具体的には、販売戸数と単価の組み合わせで売上を構成する新しい項目を作成したり、数字を視覚化するためにグラフを使ったりすることです。これまでの自分には、そうした手間をかける習慣がなかったことに気づかされました。 分割方法はどうかな? データの分割方法についても新たな視点を得ました。従来は年齢別に10歳ごとで分けていましたが、大学生に焦点を当てた18歳~22歳の分割や、4歳ごとの分割法を知り、新鮮な驚きがありました。こうした視点の転換は、日常業務にも活かせると感じました。 分解の効果は? 博物館での演習を通じて、分解を重ねることで新たな洞察が得られることがわかりました。ただ満足するだけでなく、さらなる分解が重要だと認識しました。講師からも、迷ったらとにかく分けてみること、特徴的な結果が出なければそれは次のステップだという考え方を学び、大変共感しました。 MECEは本当に有効? 最後に、MECE(漏れなくダブりなく)の考え方について学びました。今後、業務で悩んだ際には、この考え方を基に問題を整理していきたいです。 来店客の傾向は? 店舗に来店するお客様を分析することで、今後の店舗運営に役立つアイデアが出てきそうです。現在、来客数が減少している問題があり、分析を通じてその原因を探ることが必要です。スタッフの協力を得ながら、効果的な施策を考えていこうと思います。 学びの実践方法は? 今回学んだ手法は、①手を動かす、②機械的に分けない、③複数の切り口を試す、④悩むくらいなら分ける、⑤失敗は次のステップ、⑥分けることで分かる、というステップで進めていくことが重要だと実感しました。

データ・アナリティクス入門

問題の原因をデータ分析で解明!

問題の原因をどう探る? 問題の原因を探るためには、データを確認しながら原因を突き止めることが重要です。問題の原因を明らかにするために、プロセスを分散して問題箇所を絞り込み、原因の仮説を立てるのが効果的です。問題がある場合、その結果には必ずその流れがあり、その流れを押さえることで、プロセスのどの段階に問題があるのかを特定できます。 解決策の検討はどう進める? 解決策を検討する際は、複数の選択肢を洗い出し、根拠を持って絞り込むことが求められます。ステップを踏んでデータを分析し、問題解決の精度を高めることと、仮説を試しながらデータを収集し、より良い問題解決に繋げることは、両者のアプローチを組み合わせることが効果的です。まず手始めに身の回りのデータを分析すること、分析の練習を積み重ねること、そしてどんな分析計画を立てるかシミュレーションし、どんな情報を誰から収集するのか、データはどんな形で収集すればよいかを考えることが大切です。 シンプルで低コストなA/Bテストの利点 A/Bテストは、AとBの施策を比較するシンプルなテストです。運用や判断がしやすく、低コストで少ない工数で実施できるため、リスクが少ない。A/Bテストを行う際には、目的や仮説をしっかりと明確にし、有効なデータが集まるまで実施します。ただし、複数の要素をテストしたい場合には別の手法を検討すべきです。また、パターンは同時に同じ期間行うことが必要です。 データ分析の第一歩は何から始める? 解決策を考えるときには、必ず複数の選択肢を検討し、「ステップを踏んでのデータ分析」と「仮説を試しながらのデータ収集」の両輪で分析を行うことが効果的です。分析が苦手な方には、まず身の回りのデータを分析すること、分析の練習を積み重ねること、そして問題にはそこに至るまでの流れがあることを意識することをお勧めします。

「結果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right