デザイン思考入門

仮説で解く!みんなの業務課題

なぜ業務量に差が生じた? 現在の業務は減少せず、同じ部署内で担当する業務量に大きな差があるという課題を感じています。この状況について、なぜそのような事態になっているのかを定性分析を用いて仮説を立て、解決に向かわせる方法を考えました。インタビューなどを通じ、単なる業務量だけでなく、その背後にある問題点を明らかにする必要があると考えています。 アンケートから何が分かる? 今回の演習で気づいたのは、アンケートの結果から、経験や年代にかかわらず共通の課題が存在することが分かった点です。この結果は、データをコーディングすることで抽出されたものです。しかし、実際に対処するデータは今回のものよりも複雑で量も多くなるため、分析の難易度は大幅に上がると感じました。また、課題設定において、単に現状の課題を把握するだけでなく、その課題があることによってユーザーがどのような回避行動をとるのかという視点を加えるという新たな発想も得られました。回避行動も一つの課題として捉え、解決策を検討することが求められると学びました。 定性分析で何が見えた? さらに、分析手法として定量分析と定性分析が存在し、特に仮説の構築が重要であることを再認識しました。定性分析は仮説構築に大いに役立つという新たな気づきも得られました。分析結果から浮かび上がった問題について、もし解決が進まなかった場合の条件を設定し、さらに課題を掘り下げる手法も有効であると感じました。なお、解決策を前提にして課題を定義しないという点についても、常に意識して取り組む必要があると理解しました。

データ・アナリティクス入門

目標達成の鍵は目的の明確化とデータ分析

目的の設定はなぜ重要? 分析を始める前に、目的の設定が非常に重要だと感じました。ビジネスにおいては、自分たちが他者のどんな課題を解決できるのか、そして自分たちの強み(競合優位性)は何なのかを明確にしてから、目標や目的を設定することが大切です。データ分析はクライアントの課題を解決するための手段の一つであり、データ分析の手法を学ぶこと自体を目的にしないように心がけたいと思います。 生存者バイアスにどう対抗する? また、生存者バイアスに引っ張られないコンサルティング施策の立案も重要です。成功事例を基準に判断し、成功しなかった事象を軽視する傾向があります。そこで、解決策として生存者と非生存者の両方に目を向け、結果全体のデータ分布を分析することが必要です。 複数視点を持つ重要性 複数の視点を持つことも大切です。肯定的な結果だけでなく、否定的な結果も含めて複数の結果を検討します。そのためには、失敗に関するデータを収集し、様々な立場の人たちからフィードバックを幅広く集めることが求められます。 自分の仮説をどう疑う? さらに、自分の考えを否定してみることも重要です。自分の仮説や結論に対して疑問を投げかけることで、新たな視点が生まれます。 プロセスに注目する理由は? 最後に、データを定点観測する際は結果だけに目を向けないことです。最終的な結果だけでなく、その結果に至るプロセスにも注目します。複数のタイムポイントを設定し、結果に至るまでの変動やどの時点で問題が発生したのかをデータに加えるように心がけることが大切です。

アカウンティング入門

経営分析の魅力に迫るP/L読み解きの旅

経営の違いをP/Lでどう見る? アキコのカフェのP/Lを見た後、再度アキコのカフェの事例を基に、コンセプトから各項目を確認すると、ミノルとの違いが明確にわかり、経営の違いやP/L上の各利益の見え方の違いが理解できました。今まで苦手意識を持っていたP/Lですが、読み解きポイントとして「全体をわしづかみ」「売上高をみる」「各利益をみる」「分析(傾向、相違点)」などの説明を通じて、少しずつ理解が深まりました。また、コンセプトが経営に与えるインパクトの大きさや「付加価値」の重要性も再認識しました。 P/Lの理解度をどう確認した? まず、P/Lを定着させるために、自社または他社のP/Lを読んでみる必要があります。今回学んだことの理解度をチェックするために、社内の専門部門(経理)に説明し、答え合わせを行いました。最終的には、自部門(部品調達)に関係する社外のP/Lを読み解き、相手方の経営状況を把握する予定です。 自社・他社のP/Lをどう活用する? 実際に自社または他社(業種問わず)のP/Lを入手して読み解き、そこから何が見えるかを整理してみました。私の場合、繰り返し実践しなければ知識が定着しないため、何度も試みました。結果を専門部門に説明し、理解度をチェックしたところ、認識違いがなかったため、特に問題ありませんでした。ただし、P/Lを作成する側の目線で細かい部分についてはアドバイスをもらいましたが、その部分までの理解はまだ不十分です。上記が完了した後には、自部門に関係する社外情報を入手して確認していきたいと考えています。

デザイン思考入門

対話で紡ぐ未来への羅針盤

抽象と具体はどう? 定量・定性分析に加え、コーディング分析で述べられた「抽象度と具体化」の相互プロセスが非常に重要だと実感しました。私が実践した活動は、一般募集で参加者を募り「未来デザイン教室」を開催することから始まりました。その後、複数人を対象にマンツーマン・コーチングを実施し、事前のヒアリングシート(属性情報)、ワークシート(ありたい理想図)、オンライン対話の三種類の情報を活用して潜在的な問題点を明らかにし、今後の課題についてアドバイスを行いました。 問題の要点は何? これらの活動では、対話の中で抽象的な表現と具体的な表現を行き来させ、参加者が抱える問題や課題の全体像を共有するよう努めました。具体的な事象や数字に踏み込んで話す人、抽象的にしか表現できない人、あるいは言葉が体言止めに終始して動きのない人など、参加者それぞれの癖が見えてきました。そのため、具体的な発言が多い方には「つまり、要点は?」と問いかけ、抽象的な方には「結局、どんな意味になるの?」と解像度を上げるよう心がけました。この対話の往復により、全体像を俯瞰する視点が得られることが大きな気づきとなりました。 構図をどう捉える? また、定量・定性分析、コーディング、そしてフレームワークやプロセスを通じて「仮説の構図」を把握することができれば、隠れた領域や既存概念の硬直した部分を明確に特定しやすくなると感じました。アイデアが行き詰まった場面でも、課題の構図が見えることで、その構図自体を再構築でき、結果として新たな方向性が見えてくると考えています。

クリティカルシンキング入門

自分の思考を再構築する力を磨く

情報を正しく捉えるには? 物事を正しく捉えるためには、情報を分解して吟味し、漏れやダブりがないかを確認することが重要です。そのため、MECE(Mutually Exclusive, Collectively Exhaustive)の状態に持っていくためには、①全体を定義すること、②変数で考えること、③プロセスで考えることが求められます。 どうして即答を避けるべきか? 私はしばしば、一つの情報からすぐに答えに飛びつく傾向があります。これを改善するために、内省しながら進める必要を感じています。社内のルールを策定する際、漏れが出てしまうことがあり、また、プロジェクトにおけるアンケート作成では、漏れやダブりを防いで分析するために、どのような設問を構築するかがポイントだと気づきました。 課題を見極めるための視点は? 多くの場合、ある結果を出したいからこそ、そのための設問を逆算して考えるのですが、この視点が漏れることが頻繁にあります。また、分析値に基づかずに判断してしまうこともあり、感覚に頼っていることに気が付きました。 無意識に有能になるには? 課題とは何かを正確に捉えるためには、まず漏れやダブりがないかを確かめることが不可欠です。全体を定義し、「What」「When」「How」といった切り口で課題の特定を進める必要があります。変数を使ったり、プロセスで考えることを意識しながら課題に取り組むことを心がけています。 すぐに実現できることではありませんが、無意識的有能になるよう、反復練習を積んでいきます。

戦略思考入門

挑戦と実践の成長ストーリー

どんな効果が期待? 新たな取り組みを実施する際には、まずコスト対効果を十分に考慮し、周囲の人々を巻き込んだ計画作りを行います。既存のノウハウや取り組みとのシナジーを見出すことで、より一層効果を高める工夫も大切です。また、現状を定量的に把握し、計画実施後に数値がどのように変化するかを予測することで、計画の有効性を具体的に見える化することが求められます。さらに、部門長や経営者の視点に立ってアプローチを考えることで、戦略全体の見直しにつなげることができます。 現場で何を議論? また、具体的な課題解決の現場では、人材育成、品質向上、業務効率化などに関する検討会で各施策を議論します。来年度に実施する中期経営計画では、目標設定、現状分析、課題の抽出、そしてKPIの設定が重要なステップとなります。これらを踏まえた上で年度ごとの取り組みを具体的に計画し、同僚や部下と連携して年度目標の達成に向けたマネジメントを実行していきます。 優先順位はどう? さらに、限られたリソースを有効活用するためには、優先順位の付けや不要な取り組みを削ぎ落とす意識が不可欠です。部下全員の取り組み状況を毎月トレースできるよう、簡易な確認体制を整えることも重要です。たとえば、係長に取りまとめを任せ、課題を報告してもらう仕組みがあると、係長のマネジメント力が向上し、その結果、上位者がより高い視点で戦略を考える時間を確保できるようになります。こうした仕組みが整えば、初期段階での気づきを着実に実践に移す余裕が生まれ、全体の効率も向上するでしょう。

データ・アナリティクス入門

データ分析で未来を切り拓く!

初期の分析結果は? 物販店の2割削減商品の仮説では、以下のような視点で分析を行いました。まず、データの重心は平均によって決定し、前年同月との販売比較を行いました。また、客単価や平均購入数、近隣店舗との売り上げ比較、顧客のインバウンド需要が変動した理由として、為替レートや可処分所得の変化にも注目しました。これに加え、アンケート施策も取り入れることで、順序立てて考えられるようになりました。 未知領域はどう? 次に、分析がまだ行われていない未知の領域を探るため、仮説を立てる必要があります。KPI以外のデータも分析の対象とすることで、現状を打破することを目指しています。そのために、データ分析手法に行動経済学や神経経済学の視点を取り入れ、心理的なデータ選択を通じて新しいデータ取得方法を確立したいと思います。最終的には、消費者の満足度や不満足度の要因を数値化し、顧客視点を重視した満足度向上に努めたいと思います。また、大量のデータを扱うため、ビッグデータ解析にも挑戦する予定です。 実務活用の振り返りは? 行動計画としては、本研修で学んだデータ分析や問題解決、仮説思考を実務でも活用していきます。これらのスキルは、データ以外の業務にも応用できると確信しています。研修で実施したことと実務での分析結果を2ヵ月間比較し、自分なりにレビューを重ねて、どれだけ浸透したかを振り返ります。また、ストレッチ領域として、ビッグデータに触れ前処理に苦労すると思いますが、実際に手を動かして経験を積んでいくことから始めていきます。

クリティカルシンキング入門

データから見える新事業の可能性探し

データ分析はどう見直す? 得られたデータをそのまま解釈するのではなく、解析の手間を加えることで新たな理解を得ることが可能です。具体的には、割合や相対値を使ってデータを加工したり、数値をグラフや図に変えて視覚的に理解する方法が有効です。また、多くの視点や切り口でデータを分け、特徴的な傾向を探ることが重要です。この際、単に機械的に等間隔で分けるのではなく、その方法が本当に適切かどうかを常に疑う姿勢が求められます。いくつかの切り口で得られた結果を総合的に考慮する際は、誤った結論に至らないよう注意が必要です。 新規事業の見極め方は? 新規事業テーマを探索する過程では、どのテーマを選定すべきか全体像を把握するために、異なる切り口を試してみると良いでしょう。市場規模、成長率、顧客数、深刻度、性別、年齢、居住地などでデータを分けると、それぞれ異なる見方ができるかもしれません。そして、特徴的な傾向に対しては鵜呑みにせず、一度その信ぴょう性を確認する習慣を持つことが大切です。 情報収集は何を重視? 現在は情報収集やヒアリングの段階ですが、まずは分析に必要な情報をしっかり集めることが重要です。その後、複数の切り口でデータを分け、特徴的な傾向が浮かび上がるかを確認します。ヒアリングを行う時も、聞いた内容をそのまま受け取るのではなく、別の視点や視座で見た場合どうなるかを意識して理解を深めたいと考えています。また、課題がどのように存在しているのかを探る際、ヒアリングした内容を整理することで思考を整えたいと思っています。

リーダーシップ・キャリアビジョン入門

振り返る!成果と人間性の調和

マネジリアル・グリッド理論で何が重要? マネジリアル・グリッド理論では、業績への関心と人間への関心のバランスが重要であると感じています。特定の型が良いとは限らず、両方の観点を柔軟に持つことが求められるでしょう。私の職場では、結果だけに集中しがちで、人間への関心が低下していると感じました。やる気のない人を放置したり、自分でやった方が早いと考える点についても改善が必要です。 パス・ゴール理論の理解を深めるには? パス・ゴール理論においては、指示型、参加型、支援型、達成志向型の4つの区分があり、それぞれの理解が基本になります。区分にはとらわれず、状況によって臨機応変に対応することが理想的です。部下の適合要因は理解できるものの、環境要因を打破するのは難しいと感じます。 どうすれば人間への関心を高められる? 人間への関心を高めるためには、まず「結果を出す」という視点に加え、個々人の強みを伸ばし生かす視点を取り入れる必要があります。たとえば、参加型の手法を用いて他の意見を取り入れやすいコミュニケーションを心がけることが重要です。また、後輩が質問をしてきた際には、その背景を伝え、考える時間を与えることが大切です。これにより、後輩は自信を持ち、若い視点から新しいアイデアが生まれることを期待できます。 キャンペーン企画での意見収集の重要性 キャンペーン企画の際にも、すべてを自分で決めるのではなく、意見を積極的に収集し、皆で作り上げることで、やらされ感ではなく参加感を高められるように心がけたいと思います。

データ・アナリティクス入門

因果の謎を解く学びの旅

因果と相関、どう考える? 相関関係と因果関係をセットで分析すると、その結果をもとに具体的な打ち手を考えやすくなります。具体的には、因果関係が成立するためには、「時間的順序が正しいこと」「相関関係が存在すること」「第三の要因が介在しないこと」という3つの条件を満たす必要があります。 時系列分析ってどう? また、過去のデータを活用して将来を予測する際には、時系列分析が非常に有効です。これに加えて、パレート分析やウォーターフォールチャートといった手法も、データの分析や可視化に役立ちます。 データ収集は大丈夫? データ収集にあたっては、対象が意味のあるものであるか、アンケートや口頭での聞き取りといった方法が適切に実施されているかを確認することが重要です。 契約商品の予測はどう? さらに、契約商品同士の相関関係や因果関係を把握することで、因果関係が認められる商品から、契約しやすい商品を予測して提案することが可能になります。特に、履歴などの時系列データを活用して、時系列データの4つの要素を理解し、使用するデータが何に該当するかを明確にした上で分析を行うことが求められます。 定義変更、何をチェック? 最後に、データの収集段階では、データの定義が変更されていないかどうかを確認した上で、顧客情報や各種商品の契約状況をリスト化し、各種商品間の相関係数を算出します。もし、相関が認められる商品同士に因果関係が存在する場合は、その因果構造に基づいた商品提案を検討することができます。

クリティカルシンキング入門

データ×想像が生む信頼の伝え方

week5の難しさは? week4までは「自分の伝えたいことを考え抜く」ことの大切さを学びましたが、week5では大量のデータの中から本当に伝えるべき内容を見極める難しさを実感しました。 どう説得力を作る? また、説得力を高めるためには、次の①~③のサイクルを回すことが重要だと感じました。まず①、伝えたい思いを表現する前に、その背景をさまざまに想像します。次に②、その思いがデータによって裏付けられているかを確認し、さらに③、根拠が不足している場合には追加のデータを集めます。こうした手法により、単に閃きに頼るのではなく、しっかりと時間をかけることで、より良い成果が得られると自信が持てました。 サイクルの意義は? ①~③のサイクルをしっかりと回せば、客観的な調査結果や説得力のある行動が浮かび上がり、未知の領域にも効果的にアプローチできると感じています。 大テーマの捉え方は? また、想像するのが難しい大きなテーマに対しても、この手法は効果を発揮します。たとえば、新たなビジネス展開において、どの分野や顧客をターゲットにするか、どのようなアプローチが有効かを見極める場合などです。 計画への活かし方は? ただし、十分な時間をかける必要がある分、定常業務にそのまま適用するのは難しいと考えています。年度方針や中期計画など、じっくり取り組む必要がある場面で活用するのが最適だと思います。現在、今期の計画に取り組むタイミングであり、この学びをしっかりと活かしたいと感じています。

データ・アナリティクス入門

競馬データと経済学で勝ち馬予測!

馬と騎手の相関はどう? G1エリザベス女王杯の勝ち馬を予測するために、馬の成績を縦軸に、騎手の成績を横軸に設定すると、相関関係をつかみやすいと感じました。さらに、馬のコンディションを要素として加えることで、勝ち馬の傾向はよりクリアになるでしょう。 平均値はどう捉える? また、平均値について学んだ際には、大谷翔平選手の年俸が推定105億円である一方で、MLB全体の平均年俸は推定7.4億円、中央値が2.3億円とされていることに気付きました。大谷選手のような高収入の選手がいることで平均値が大きく上がっていることが分かります。同様に、YouTuberの収入でも、高所得者が一部の平均値を押し上げていることが明らかです。 株価の動向はどう? さらに、日経平均株価は時価総額の大きな銘柄が加重平均に影響を与えることを学びました。例えば、ある銘柄の株価が上昇すれば、日経平均株価全体も上昇することになります。 業務分析で何が見える? 業務の中では、交換した部品の不良品発生状況を分析することで、故障の傾向を明確にし、予防的な措置を取ることができると考えています。また、分析結果を視覚的に示すことで、説明が容易になるでしょう。部署内では、作業実績を標準偏差で分析し、業務改善に役立てています。 次回の計画はどう進む? 次回のZoomグループワークではフェルミ推定を活用してエリザベス女王杯の勝ち馬を予測する計画です。また、新NISAでは株式銘柄選びや新商品の市場規模予測にも役立てたいと思っています。

「結果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right