マーケティング入門

学びが未来を輝かす体験の秘密

体験価値って何故? モノを売るのではなく、体験を売るという考え方は以前から理解していましたが、ディズニーランドの具体例が示されたことで、より一層納得することができました。個々の要素がただ優れているのではなく、全体でストーリーを描いている点が強みであり、機能的な価値以上に情緒的な価値が高く評価されていることがよくわかります。 商品選択はなぜ? また、たとえば一部の家電においては、ダイソンを選ばない理由や、パナソニックの商品を実際に使った経験が影響しているという事実も、興味深い示唆を与えてくれました。同じ種類の家電を購入する際、まずはパナソニックが選ばれる傾向があるのは、企業側が直接経験を作り出すことは難しいものの、顧客に良い体験を提供できれば長期的な関係性にもつながるという証左です。 未来はどう感じる? さらに、パーパスやミッションの実現方法についても考察を深めました。商品を通じて顧客が体験する「先にあるもの」を具体化することがゴールであり、ただ単に業務改善を目指すだけでは大手企業に太刀打ちできないという厳しい現実も見えてきます。いかにその先の明るい未来を体験させ、想起させるかが大きな課題であり、そのためにも改めてパーパスの再構築が求められています。 戦略は見直す? 来期のスタートが目前に迫る中で、今期は曖昧な状態のまま積み上げてきた戦略に限界を感じています。自社の商品の魅力を誰に、どのように伝えるか、そしてその結果としてどのような未来を望むのかを明確にするため、これまで学んだことを活かし、前段階の整理を早急に進める必要があると感じています。

データ・アナリティクス入門

マーケティング戦略を基礎から応用まで徹底理解

ナノ単科で得た学びとは? 今回のナノ単科を通じて、多くの学びを得ることができました。特に、マーケティングの基本的な考え方やその応用について深く理解することができ、非常に有意義な時間となりました。 基本概念の業務への活用 まず、マーケティングの基本概念を学ぶことで、自分の業務にどのように活かせるかを具体的に考えられるようになりました。特に市場分析やターゲティング、ポジショニングといった基本的なフレームワークを使用することで、より効果的な戦略を立案する基盤ができました。 具体的事例からの学び 次に、具体的な事例を通じて学んだことが大きな助けとなりました。実際の企業がどのような戦略を取っているのかを理解することで、自社の戦略にも応用できるヒントを得ることができました。この部分は、実務に直結する知識が多く、特に印象に残っています。 多様な視点を得る方法は? また、課題に取り組む中で自分の意見をまとめる力や、他の受講生とのディスカッションを通じて多様な視点を得ることができました。これにより、自分の考えの偏りを修正し、より広い視野で物事を見ることができるようになりました。 未来の業務にどう活かす? 最後に、今後の業務において今回の学びをどのように活かすかを考えています。マーケティングの基礎知識を活用し、より戦略的に物事を進めることで、組織全体の成果に貢献できるようになりたいと考えています。 以上のように、ナノ単科を受講することで得た知識と経験は、今後のキャリアにとって非常に有益なものとなりました。引き続き、学びを深めていきたいと思います。

データ・アナリティクス入門

データ分析で改善への道筋を見つけよう

分析の基礎を見直すには? 分析とは、データの要素を整理し、比較対象や基準を設けて比較することです。目的や比較対象が曖昧だと、分析とは言えません。データを漫然と分析し始める前に、その要素を整理し、明確な目的を持って比較することが重要です。 可視化手法の多様化を 分析の結果を効果的に見せるためには、定量データの種類に応じた加工方法やグラフの見せ方を工夫する必要があります。これまで自己流でデータを可視化してきたこともありますが、さらに多様な手法を学び、見せ方を向上させていきたいと考えています。 採用分析をどう進める? 採用に関わる分析とその対策については以下のように進めます。まず、分析の目的を明確にし、具体的な比較対象を設定することが重要です。例えば、「前週比での応募者数の変化」や「媒体別、フェーズ別の歩留まり」といった視点で分析を行います。これにより、漠然とした分析を避け、得られる洞察が増します。 データを効果的に可視化 また、データの可視化については、週次データの推移を折れ線グラフで表現したり、部署別の採用状況を棒グラフや円グラフで示すなど、データの特性に合った適切なグラフを使います。こうした方法で、データの傾向や課題がより明確になり、効果的な対策の立案に繋がります。 分析のブラッシュアップ方法 今後、目的を複数設定し、分析のための要素分解や比較対象の再設定(過去3年間や各媒体ごとなど)、統計データの整理、分析手法の見直し、結果の行動変容といった点についても改善を重ね、週次で行う分析をブラッシュアップしていきたいと思います。

データ・アナリティクス入門

仮説で見える新たな可能性

仮説の意義って何? この教材では、仮説の基本的な意義とその分類について学びました。結論の仮説と、問題解決の仮説に分かれており、特に後者は「What?→Where?→Why?→How?」というプロセスで問題にアプローチする点が印象的でした。 検証マインドは必要? また、検証マインドの重要性や、説得力の向上、関心・問題意識の向上、スピードアップ、そして行動の精度向上といった効果も理解でき、実務における検証のプロセスがいかに大切かを再認識することができました。 SNSで成果は出る? 実際のSNSキャンペーンでの活用例として、たとえば「ソーシャルメディアAが最も広告費対効果に優れているのでは?」という仮説を立てる方法が紹介されていました。過去の広告データを徹底的に分析し、どのプラットフォームが最もコスト効率が良いかを比較。その後、小規模なA/Bテストを実施して実際のパフォーマンスを検証し、最も成果が出たプラットフォームに予算を集中させるという具体的な手順です。 フレームワークは有効? さらに、仮説のフレームワークを実業務に当てはめるための補助ツールとして、4P(Product, Price, Place, Promotion)や3C(Company, Customer, Competitor)、そして問題の本質に迫るための5Why(なぜ?を5回繰り返す)といった手法が紹介され、実践的な視点が取り入れられていました。これらのフレームワークは、課題の分析や市場での自社のポジションの確認、そして問題の根本原因の探求に大いに役立つと感じました。

クリティカルシンキング入門

気づきが変えた!思考の深掘り術

なぜ深掘りが重要なのか? 物事に対して「なぜ」と深く掘り下げる姿勢が大切だと気づきました。データや他人の意見を表面的に捉えることが多かったことに改めて気づかされました。クリティカル・シンキングがなぜ必要なのか。物事の意味を深く考えることが、その本質を捉えることに結び付くのだと実感しました。 ロジックツリーで得られる新しい発想とは? また、ロジックツリーの考え方を学び、自分の思いつきに頼った方法から離れることができました。課題に対して原因をカテゴリーに分けて掘り下げることで、新しい発想を得られることがあります。今後もこの考え方を活用していきたいと思います。 なぜデータの深掘りが必要なのか? 具体的には、新商品の企画立案や商品の売上分析の際に役立つと考えています。市場調査や顧客の声を参考にしている中で、データをそのまま受け取ってしまうことがあるため、なぜそのような意見やデータになるのか深掘りする思考を持ち、情報を整理することに努めたいです。また、売上分析では、顧客の感じ方をより深く理解するために「なぜ」を問い続けることで、具体的な施策提案につなげられると考えています。 思考整理の習慣化はどう進める? 一度学んだからといってすぐに身につくわけではありませんが、まずは日々の考え方の習慣づけから始めて、自分の能力として高めていきたいです。例えば、上司に確認する予定の内容について「なぜそう思ったのか」を考え直し、思考整理を進めます。また、現在の課題や案件にロジックツリーを使い、漏れや重複がないかを確認しながら原因と考察をしていく予定です。

戦略思考入門

はっきり決める勇気!選択と集中の秘密

選択と集中の意義は? 選択と集中はよく耳にする言葉ですが、実際に実践するとなると難しさを感じます。自身の生活においても、本や衣類、思い出の品を手放すことが容易ではないように、会社ではプロジェクトや事業において同じ課題があると考えています。 捨てる条件は? 捨てる際に最も困難なのは、その条件を明確にすることだと感じます。例えば、本であれば、どの段階でその役割を終え、手放すかという目標設定が必要です。同様に、衣類ではいつ再度着用するかなど、明確な基準が求められます。 撤退判断は? また、事業に関しては、撤退の判断基準が不透明な場合が多いと感じます。たとえば、全体の売上に対して事業部の売上がどの程度後退したら撤退するべきか、また累積赤字がどこまでなら許容され、どの段階で撤退するかといった具体的な観点や条件について、社内で議論できればと思います。 投資効果の見極めは? 製品企画や技術開発、販売営業といった分野においては、どのプロジェクトが投資効果を生むのかを見極める必要があります。そして、事業全体としては、どの段階で撤退や新規実施を行うのか、明確な判断基準を持つことが大切だと感じました。これらの基準を明確にすることが、今後の業務において判断や行動に大いに役立つと学びました。 指標の重要性は? 一般的に重視される品質、コスト、納期といった指標がいかに重要かを再確認しました。タスク、プロジェクト、事業ごとに判断基準を設定し、それに基づいて進めるとともに、自分が取り組む業務には必ず情報発信を織り交ぜるよう努めたいと強く感じています。

デザイン思考入門

共感が創る企業支援の未来

共感の大切さは? 企業支援を主な業務とする中で、最も効果的なのは、デザイン・設計の段階で「共感→課題定義→発想→試作→テスト」という流れを取り入れることだと感じています。特に「共感」のステップに重点を置くことで、ユーザーの深層ニーズをより正確に引き出すことが可能になります。このため、課題定義に入る前に必ず共感の把握を行うプロセスを取り入れるべきです。 具体策はどう? また、共感の手法や具体例については以下の点を改めて検討しています。具体的には、共感のプロセスでどのような方法を用いて深層ニーズを引き出しているのか、そしてそのニーズを把握した後、どのような形で課題定義に活かすのかという問いに対して、実践に即したアプローチを模索する必要があります。 実践の工夫は? 実践面では、十分にそのままの形で実施できていないと感じることもありますが、振り返りの中で、ユーザーの情緒的な側面に配慮しながら課題定義を行うことで、内部での納得度が高まり、最終的な成果にも良い影響を与えると実感しています。これまでも一部では提案を行ってきましたが、さらなる観察やヒアリングを通じて、より具体的な対策を講じるべきだと考えています。 未来へどう進む? 今後は、企業支援の流れにおける「共感」から始まる一連のプロセスを、より具体的かつ実践的に展開していきたいと考えています。さらに、マーケティングのみならず、経営や企業変革全体を視野に入れた支援を実施するため、従来の課題解決から課題定義へのシフトを図り、自身の支援サービスのあり方についても再検討する予定です。

データ・アナリティクス入門

課題を分解!納得解決への道

課題の裏側は何? 課題に取り組む際は、各要素を因数分解し、ステップごとに整理することで納得感が高まると実感しています。今回の課題も、最初はアンケートによる満足度の低下に着目しましたが、さらに深堀りすることで、事業の柱である上級クラスの今後の採用方針まで課題が波及していることが見えてきました。目の前の問題を一気に解決しようとするのではなく、その課題から導かれる仮説をひとつずつ丁寧に検証し、対処していく姿勢を大切にしています。 分析の進め方はどう? また、業績に直結する数字の悪化など、すぐに解決できる施策を探すことに注力しがちですが、分析のステップをじっくり進めると、チームビルディングや個々の業務の進め方など、すぐには表面化しない根深い問題にも気づくことが多いと感じています。こうした課題に対して、全員が納得しながら解決に向けて取り組むためには、段階を追って問題解決を進めることが重要であり、わかりやすいアプローチが求められると感じました。 仮説の説明はどうなってる? 自分の考えた課題と、分析によって得られた仮説や解決策を順を追って説明することで、関係者にも理解しやすくなると考えています。また、一度に説明しても伝わりにくいため、各会議の場でテーマごとに議題として取り上げ、直接関係するメンバーに課題を提示するようにしています。例えば、ある会議では売上改善のための施策や単価、人数といった具体的な対策、さらにターゲットとすべき客層や現行の営業アプローチの方法など、段階的に議論を進めることで、最も効果的なアプローチを模索しています。

データ・アナリティクス入門

問題解決力を育むプロセスの魅力

原因の見極めは? 問題を解決する方法の一つとして、プロセスを分解して原因を明らかにするアプローチがあります。また、解決策を検討する際には、複数の選択肢を洗い出し、根拠に基づいて選定することが大切です。この際には、判断基準の重要度に基づき重み付けを行い、解決策を評価して選択します。 データで何が分かる? データを分析しながら問題解決の精度を高めるためには、ステップを踏んで行う方法や仮説を試してデータを収集し、改善につなげる方法があります。これらのアプローチを組み合わせることで、データ分析をより高度に行うことが可能です。 業務の見直しは? 現在、マーケティング関連の業務をしていなくても、特定の目標を達成するために、行動や業務フローを時系列や工程ごとに分解し、問題点やボトルネックを洗い出すことができます。これらの問題が実際にボトルネックとなっているかは、日々の業務を通じて確認、検証、改善を重ねることが必要です。このプロセスを通じて、実際に成果に結びつく行動を特定することが重要です。データ分析が可能となるよう、数値化された目標や行動(KPI)が設定されていることが重要な前提です。 残業改善のヒントは? 例えば、チームが抱える課題として残業時間の多さがあるとします。この場合、目標を「各スタッフの残業時間を月10時間以内に抑える」と設定し、各スタッフの業務工程を洗い出し、それぞれの業務にどれくらいの時間がかかっているかを分析します。そこから、効率化またはアウトソーシング可能な箇所を特定し、実際に実践することが望ましいです。

データ・アナリティクス入門

小さな気づきが未来を拓く

原因はどこにある? データ分析の各ステップを学んでいく中で、問題の原因を具体的に特定する段階に達しました。その過程では、確かに難しさも感じました。普段、何気なく行っている問題の究明はあいまいな部分があり、必ずしも分析に基づいて進められているわけではありません。たとえば、ある文書に対する口コミに関心を持っても、その口コミの年代や時期、男女比、キャンペーン実施の有無など、詳細な点には踏み込まない場合が多いと感じます。 どう試せばいい? また、動画でも示されていたように、このステップや手法に慣れるためには、身近な事例で実際に試してみることが不可欠です。うまくいかないときには、どの点をどのように改善すればよいかを考え、再度取り組むというプロセスを繰り返す必要があると実感しました。 適用例はどう考える? この手法は幅広い場面で活用できると思いますが、具体的な適用例をすぐにイメージするのは難しい面もあります。日常的には数字を扱っていますが、それらの数字から直接施策や解決策を導き出す機会が少ないため、意識があまり向かないのかもしれません。また、非常に困難な状況や緊急性の高い場面が少ないことも影響していると考えます。 改善の実現方法は? 現職は大きな問題がないため安定しているものの、逆に「こうなればもっと良くなるかもしれない」という改善点に積極的に取り組めていない部分も多くあります。問題と捉えるというよりは、今後の課題として「どのようにすればさらに良い状態になるか」を洗い出し、身近に改善すべき対象を見つけていきたいと考えています。

データ・アナリティクス入門

仮説で切り拓く成長への道

フレームワーク何故有効? 課題に取り組む中で、仮説作成のためのフレームワークが非常に有用だと実感しました。普段は、「〜なんじゃないかな」「このデータだとこんな感じかな?」と何気なく仮説を立てることもありますが、フレームワークを用いることで、考えるべき側面を網羅的に整理でき、より多くの仮説を効率よく導き出せると感じました。もちろん、一般的な枠組み(例:3Cや4P)以外の見方が必要な場合もあり、その都度、自分で検討することが大切だと再認識しました。 過去の仮説はどうだった? 過去の業務では、なんとなく仮説を立てたり、仮説を持たずに作業を進めたりすることがあったと感じています。そのため、今後は以下の点を意識して取り組んでいきたいと思います。 ・常にフレームワークを利用して仮説を作り出すように心がける。 ・過去に読んだマーケティングの書籍などを再読し、その知見を実際に活用する。 ・仕事だけでなく、日常生活においても仮説を立て、検証するプロセスを積極的に取り入れる。 検証プロセスは有効? また、データを単に集めたりビジュアル化するだけでなく、意図的に仮説を立て検証するプロセスを業務に取り入れることで、より論理的なアプローチができると考えています。今後、講義で学んだ具体的な方法をもとに、自主学習を進めながら、疑問点や気になる点を解消していきたいと思います。 新生活どう迎える? なお、来週は新しい仕事に就くための引っ越し作業が重なり、少し慌ただしくなりそうですが、引き続き学習に力を入れていく所存です。

マーケティング入門

マーケティングで学んだ顧客満足の鍵

顧客起点のマーケティングとは? マーケティングの基本的な考え方は「顧客起点」です。これにより、顧客に価値を効果的に伝えることができます。しかし、マーケティングの定義は非常に幅広いため、人によってその解釈が異なります。したがって、共通理解を持たなければ、どの観点のマーケティングについて話しているのかが不明瞭となり、コミュニケーションにすれ違いが生じることがあります。 顧客満足度をどう評価する? 事業の成功を考える上で、重要なのは単なる売上や利益ではなく、顧客満足度を数値化して評価することです。例えば、NPSの活用や顧客へのインタビュー調査が挙げられます。売上に重点を置きがちな状況から、年間目標に顧客満足という軸を取り入れることで、「そのために何ができるか?」という視点に切り替えることが可能です。 新しい商品企画は誰のために? さらに、新しい企画や商品を考える際には、それが誰のどのような課題やニーズを満たすのかを常に意識することが重要です。これにより、顧客の視点に立った企画や商品開発が可能となります。 NPSを活用した顧客ロイヤリティ向上 最近、NPSを用いた顧客の満足度やロイヤリティを重要指標とすることが決まりました。それに伴い、単なる導入にとどまらず、メンバーにその意識を深めてもらうために、1on1ミーティングなどを活用して積極的に対話を促進することが必要です。また、企画ミーティングでは「誰のどんな価値を満足させるものなのか」という問いを繰り返すことで、マーケティング視点に立ち返る努力を続けていきます。
AIコーチング導線バナー

「課題 × 例」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right