データ・アナリティクス入門

直感だけじゃ辿り着けない未来

直感は信頼できる? 普段の仕事やデータを扱う際、経験や直感に頼った仮説が基本であったことを改めて実感しました。データ分析そのものではなく、むしろデータ収集の段階で不足している点が原因だったと考えています。この経験が、部門費などの予算策定時における変化の捉え方を再見直すきっかけとなりました。 予算根拠は正確か? 部門費の策定根拠や、今後の設備投資に関する理由付けについては、未来を見据えた考察が十分でなかったと感じています。何か異変があった場合の修理費用が予算に計上されず、過去の事例や頻度を確認することで、適正な管理につながる一手段としたいと思います。 委託実態はどうだ? 請負会社に業務を委託している現状では、作業の安定性はもちろん、雇用期間が短期に終わる点にも課題を感じています。労働内容に加え、職場環境も影響していると考え、既に委託から10年が経過している案件も多いことから、改めて状況把握から始めたいと思います。 記録整備は必要? 具体的には、請負会社で働く方々の実務経験年数や年齢層などの基本情報の収集を行い、当社を離れる理由なども可能な限り情報として集める予定です。また、設備投資に関しては、過去の作業記録のデータベース化が未実施であるため、そこから着手する方針です。

クリティカルシンキング入門

問題解決の道を切り開く分解術

問題解決の鍵は何か? 問題解決を行う際には、物事を分解することが重要です。分解する際は、まず全体を定義し、漏れや重複がないように意識することが求められます。 分解方法のバリエーション 分解の方法には、層別分解(例えば、「○○」と「○○以外」)、変数分解(「売上=単価×客数」)、プロセス分解(「入店前、入店後」など)といった切り口があります。もし分解の方向性に迷ったら、「いつ」「だれが」「どのように」といった視点から考えてみることが効果的です。 クライアント課題の深掘り法 また、クライアントの課題の根本原因を探る際には、MECEで分解を行い、特に重要なポイントを追求することが役立ちます。さらに、クライアントに提供している制作物を目標にさらに近づけるため、改善のポイントを洗い出すことも重要だと感じます。 データ加工へのチャレンジ 私はデータの加工が得意ではないため、仮説の幅を広げる練習をしているところです。3つの分解方法を利用して目の前の課題を分解してみても、選択肢がMECEに則っておらず、苦戦しています。しかし、一人で煮詰まってしまった時には、ChatGPTを活用しながら、反復練習を繰り返し続けています。

データ・アナリティクス入門

プロセス分解で見つけたヒント

なぜ分解して考える? プロセスを分解して問題の本質に迫る手法について、非常に分かりやすい事例から学ぶことができました。特に、採用プロセスの一部である中途採用面談や、顧客への提案における在庫差異の問題解決に、このアプローチを活用できると感じています。また、ABテストにおいては、条件をできる限り同一とし、検証範囲を絞るための仮説設定が重要である点も再認識しました。 採用面談、何が問題? まず、中途採用面談に関しては、自身が関与する採用活動において、プロセスのどの部分で問題が発生しているのかを明確にするため、面談調整に要する日数と採用結果の情報を人事部から収集することを検討しています。この情報をもとに、面談調整に時間がかかる原因を特定し、改善策を提言することで、採用率の向上を図ることができると考えています。 在庫の差異、どう解決? 次に、顧客への提案、特にシステム間の在庫差異に関する課題解決では、既に現状の業務プロセス分析は実施していますが、課題が発生しているプロセスの粒度が細かすぎるため、より単純化した形で説明する必要性を感じました。問題となりうる箇所を明示した上で、システム改善または運用プロセスの変更のいずれかを提案し、顧客にとって最適な解決策を提示していく考えです。

戦略思考入門

戦略思考×DXで未来を描く

戦略思考の価値は? 戦略思考とは、複雑な状況をできるだけシンプルに整理し、わかりやすく説明できる能力であると感じました。仕事に限らず、プライベートでもこの思考方法を取り入れることで、自然とその考え方が身につくのではないかと思います。 技術活用の意義は? また、参加者の方が紹介されていた、生成AIやDXツールを利用して「捨てる」理由を明確に示したり、シナリオプランニングの精度を高めるという事例は非常に印象的でした。私自身もこれらの方法を実践してみたいと感じています。 部署の役割を整理するには? 現在、私が担当している部署では、業務範囲が曖昧になりがちなため、部署本来の役割や業務内容を明確にし、具体的なアクションプランに落とし込む必要があります。そのため、プラン策定に向けて以下の点を進めたいと考えています。 今後の具体的な取り組みは? まず、これまでの成果と課題を整理するために、各担当者へのヒアリングを実施します。次に、他部署との役割の違いを明確にし、自部署に影響を与える外部環境や社内の変化についても分析します。そして、あるべき姿を明確に設定し、言語化することを目指します。最後に、部内の各チームごとに、それぞれの役割と取り組むべき課題を整理していきたいと思います。

アカウンティング入門

数字が語るリアルな業務体験

利益以外の費用は何がわかる? 売上総利益や営業利益は業務で実感できたものの、それ以外の費用について改めて知ることで、会社の動向を把握する上で大変学びになりました。PL(損益計算書)と聞くと、数字の羅列で無機質な印象がありましたが、具体的な業務事例から学ぶことで、様々な業種の数字から読み解ける点が多いと実感し、さらに掘り下げていきたいという意欲が湧いてきました。 地域別の業績はどう? まずは、自身の業務で回収している各販売会社のPLを、地域ごとに改めて確認してみようと思います。地域ごとに売れ筋商品や人件費の割合が異なるはずですから、売上総利益や販管費の比率を見ることで、事業の得意・不得意を客観的に把握できると考えています。 海外地域の課題は? また、日本の同業種の利益率を踏まえ、各海外地域の数字を確認することで、国ごとの課題を抽出できるよう、過去の業績と活動実績を振り返って分析してみたいと思います。国内では発生しない費用など、これまで気づかなかった点も発見できる可能性があります。 経費用語は何が必要? さらに、基礎的な用語が十分に理解できていないと感じたため、現業の活動にかかる各費用がどの費目に分類されるのかを改めて確認し、しっかり覚えていこうと思います。

デザイン思考入門

変化を呼ぶ営業提案の軌跡

提案で何が変わる? 普段は法人向けに体験完了のためのソリューション販売を行っていますが、提案時のストーリーテリングにも活用できると感じました。ソフトウェアの機能紹介に留まらず、「どのように変化するのか」を伝えるため、定性分析の視点を取り入れると、提示内容に説得力が加わると思います。 従業員の声はどう捉える? 例えば、従業員体験の向上を目指す企業に対して、単に「エンゲージメント調査ができます」と伝えるのではなく、既存の課題(社員の声が拾えていない)と、その背景にある要因(匿名性が低く、率直な意見が出にくい)を明確にし、ソフトウェア導入によってフリーコメントの定性分析で見えなかった部分が可視化されるという変化のストーリーを描いた提案が効果的だと考えています。 日常でどう活かす? また、デザイン思考と定性分析を活かすことで、単なるソフトウェア販売や機能訴求にとどまらず、顧客の業務課題の本質を理解し、より価値のある提案や支援が可能になると感じました。普段の業務にこれらの視点を取り入れることで、「顧客の課題を深掘りするヒアリング」「提案時のストーリーテリング」「プロダクト活用のサポート」といった場面で実践しやすくなり、来週の営業活動でも意識的に活用してみようと思います。

リーダーシップ・キャリアビジョン入門

リーダー行動を最適化する鍵とは

リーダーシップの変化って? 環境要因と部下の適合要因を見極め、最も効果的なリーダーとしての行動を取ることが重要だと感じました。過去に参加型や支援型で組織が成功していた場合でも、環境の変化により同じ部下に対してもリーダーシップを変える必要があります。例えば、状況に応じて指示型に切り替えることが必要です。 多様なメンバーにどう向き合う? 社内でのプロジェクトを想定すると、環境要因としては共通の目的があり、3C状況は共有できます。しかし、適合要因はメンバー間で異なることが多いです。国籍や価値観が異なる場合もあるため、各メンバーのスキル、個性、モチベーションを考慮し、適切なリーダー行動を見極め行動に移す必要があります。例えば、Aさんは能力・スキルが高いため支援型で十分かもしれませんが、Bさんは入社間もなくまだ慣れていないため、指示型で課題を丁寧に実施することが求められるでしょう。 目標共有の進め方は? まずはゴールイメージを明確にし、それをメンバーとしっかり共有します。その後、メンバーのスキルや個性、モチベーションを理解し、どのリーダーの行動が適切かを検討します。さらに、月次や週次で進捗を確認し、課題があればサポートするなど、適切な対応を取っていきます。

戦略思考入門

仮説で切り開くDX推進の道

情報はどう補う? 総合演習を通じて感じたことは、設問の情報だけでは答えられない問題がいくつかあり、不足している情報を取得する必要があるということです。それでも情報が不足する場合があり、その際はある程度仮説を立てて物事を考える必要があります。この点は今回の事例に限らず、実際の業務でも同様だと思いました。100%の情報が揃うことはまずなく、不足する情報は自分で調査をし、または人から聞いて知識を埋めなければならないと感じました。それでもなお未知の部分は、仮説を立てて結論を導き出す力が求められます。 新部署で挑戦する? 10月からDX推進部に異動しました。ここでは、従来の定型業務がなく、正解のない課題に取り組む必要があります。新しいプロジェクトの一つひとつにおいて、今回の学びを活かせると確信しています。特に、フレームワークを活用した現状の整理や仮説思考が重要です。 e-learningで学ぶ? まずは、ある程度答えがある事柄、つまり前提知識については、会社のe-learningを活用して知識を深めたいと思います。そして、新しいことの効果を検証する際には必ず仮説思考が必要であり、100点満点ではないにせよ、今ある情報をもとに効果を試算することに挑戦していきたいです。

データ・アナリティクス入門

データ分析で見えてくる未来へのヒント

データ分析の基礎を理解するには? データ分析を始めるにあたり、まずはデータの形式を理解し、その違いを把握することが重要だと感じました。分析に必要なデータを集め、形式に合わせた加工を施し、さらに可視化することで示唆を得る流れを認識しました。特に、データの性質をしっかり理解しないままでは、可視化しても意味がないことを学びました。 どう業務課題を探索する? 例えば、各店舗での様々な商品の契約状況から、それぞれの商品の契約者に共通する特徴を可視化したり、取引履歴と商品の契約状況の関連性を探るといった作業は、まずデータの性質を把握することから始まります。データを比較し、その特徴を掴むことで、業務課題に関連するデータが何であるかを見極めることができます。 他社事例をどう活かす? また、他社のデータ活用事例を知ることで、自社の業務に置き換えて考え、業務上の課題を発見する手がかりとすることができました。社内においても、各種システムで収集・蓄積されているデータの内容を把握し、それを整理して業務課題を解決するための手法を模索することが大切です。こうしたプロセスを経て、データの性質を十分に理解し、適切に可視化し比較することで、より良い業務改善に繋げることができると感じました。

データ・アナリティクス入門

振り返りが未来を変える瞬間

復習はどう進める? これまでの学びを振り返り、今後のありたい姿と具体的な取り組みを体系的に整理できました。振り返りを進める中で、全ての内容を完全に洗い出せたわけではなく、すでに忘れてしまっている部分も多いことに気づきました。そのため、何度も繰り返し復習し、実践の中で活用することが大切だと感じています。 管理とサポートの課題は? 私の業務は、製品の管理とサポートに関わるものです。サポート内容に対する不満と製品そのものへの不満があり、それぞれ解決すべき課題が異なります。また、即座に対処できるものと、投資や時間を要するものも混在しています。相関分析を活用して、不満の原因となる主要項目を特定し、優先順位をつけた上で対応していく意向です。 方向性のズレはなぜ? これまでの学びの中で、方向性を見誤ったり着眼点がずれてしまうことがありました。そのズレが生じた原因を、経験や定性的なデータをもとに検証し確認する必要性を感じています。さまざまなフレームワークを活用し、仮説を立てたり目的を明確にすることが、今後の正確な分析に欠かせないと考えています。ただし、数値だけに頼ると誤った解釈につながる恐れがあるため、解説書や事例を通じて知識をさらに深めるよう努めたいと思います。

戦略思考入門

取捨選択で磨く未来の軸

優先基準は何だろう? 今週のテーマは「取捨選択」であり、優先順位を上げるべきものや見送るべきものを判断するためには、情報収集と分析が不可欠であると実感しました。その上で、次に何を重視するかという軸を明確にすることも重要です。また、ビジネス環境や自社の状況は刻々と変わるため、定めた軸に沿って定期的に状況を見直し、ヘルスチェックを行いながら方針を更新する必要があると感じました。 AI進化の影響は? さらに、生成AIやAIエージェントの進化に伴い、自社事業への影響が大きくなっている現状を踏まえると、リソースの配分や断念すべき部分の判断を迅速に行う必要があります。その上で、部下への指示や壁打ちの場面でもこれらのツールを効果的に活用できると感じました。世間のブームや期待感に流されることなく、冷静な情報収集を基に自部署の方向性を見定めることが重要です。 現状の課題は何? 現状では、自部署の課題に注目しすぎて、モグラ叩き的に個別の対策を講じている状況です。そこで、周囲の環境や社内の状況を改めて整理し、どの事業に注力すべきかを明確にすることが求められます。また、慣例的に続けている効果や効率が低い業務を見直し、効率化や中止の判断を行うべきだと考えています。

クリティカルシンキング入門

データ分析に革命を起こす秘訣

データ分析の効果的な手法とは? データ分析を効果的に行うには、仮説を持って実際にデータを操作し、その結果を視覚化することが重要です。分析の切り口を考える際には、概念(例えばWhen、Who、Howなど)を意識して、網羅的に考える必要があります。一見、経時変化がないように見える場合でも、その内訳を確認し、本当に変化がないのかを疑ってみるべきです。 業績分析と来年度対策に必要なことは? 年度末に向けては、今年度の業績分析と来年度の計画策定が求められます。そのために、明確な切り口を持ち、業績に関する分析をさらに深化させることが大切です。これまでは一度分析を行うとそれに満足して終わってしまいがちでしたが、今後は他の視点や可能性を常に探求する姿勢を持とうと思います。 多角的視点で分析するには? 業績に関連する分析には通常ストラック図を用いますが、組織全体で集約するだけでなく、四半期別、顧客別、担当者別、契約形態別など、様々な切り口から分析を試みると、従来見えなかった特徴や課題を明確にすることができるかもしれません。また、EXCELのPivotテーブルやPivotグラフを使いこなすことで、自分の意図するデータの可視化ができるよう、積極的に手を動かしていきます。

「課題 × 例」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right