データ・アナリティクス入門

ABテストで見える進化の軌跡

どうプロセスを分解する? どこに問題があるかを明確にするため、プロセスを段階ごとに分解することが重要です。まず、問題発生箇所(Where)を複数の切り口で特定し、それぞれに対してABテストを実施することで仮説検証を行います。こうした手法は、効率的なコストパフォーマンスに寄与すると同時に、その後の具体的な取り組み(HOW)を事実に基づいて策定するために欠かせません。 どうデータを把握する? 私は製薬会社でMRを担当しており、担当エリアの製品が伸び悩んでいる状況をデータ分析によって明確に把握しました。売上や市場シェアの推移を詳細に検証することで、次のアクションに向けた具体的な問題点の特定が可能となりました。たとえ、担当者固有の感覚や直感に頼りがちな部分があっても、事実ベースの行動こそが仮説検証を丁寧に進める鍵であると実感しています。 何が効果的なABテスト? 具体的なABテストとしては、Aパターンではメディカル専門部署との同行訪問を実施し、Bパターンでは他施設での成功事例を共有する取り組みを行いました。一定期間のテストを経て、どちらのアプローチがより効果的であったかを定量的に評価し、その結果を基盤に最適な施策をエリア全体に展開する方向性を見出すことができました。 どう成長を促進する? 担当エリアの製品成長を促進するための手順は、まず現状把握として売上や市場シェアを分析し、成長が停滞している顧客層を見定めることから始まります。次に、影響力のあるキーパーソンや波及効果の大きい対象をリストアップした上で、仮説を設定しABテストを実施します。その後、テスト結果を定量的に比較し、最も効果が高い施策をエリア全体に適用し、次のアクションに反映させるという流れで進めています。

デザイン思考入門

共感でつなぐ学びの軌跡

共感の価値は? デザイン思考における「共感・課題定義・発想・試作・テスト」の5つのステップについて、2点の学びがありました。まず、共感の重要性です。共感とは単に同意することではなく、お互いが認識できる共通の「何か」を見出すことだと感じました。 非線形の魅力とは? 次に、これらのステップは非線形に繋がっているという点です。特定の順序にこだわるより、行きつ戻りつのプロセスを経ることが、各ステップが互いに影響し合い、より良い思考とプロダクトにつながると実感しました。 意見共有は難しい? また、システム開発の上流工程では、プロジェクトメンバー間でどのように意見を交わし、定義を共有するかが非常に重要です。システム思考がその施策として大きな役割を果たす可能性はあるものの、実際にどの程度効果を発揮するかはまだ未知数です。一方で、プロジェクトメンバー間で「共感」がどこまで実現できるのか不安に感じることもあります。これまでの経験から、どうしても「同感」に偏ってしまい、ほぼ100%の合意が必要とされる傾向があるように思えるからです。すなわち、MUSTとWANTの区別なく、すべてが必要とされる状況が根付いているのではないかと考えています。 今後の課題は? この点については、今後学びながら整理し、業務に活かしていきたいと考えています。具体的には、まずは受講生の仲間に「共感」についてヒアリングを行い、意見を共有してみたいと思います。ワークは課題中心であるため、私個人の興味本位で話を進めるのではなく、オフ会や自主的な懇親会などの機会を利用して課題提起を試みるつもりです。また、実際の仕事の中で共感と同感の線引きがどのように行われているのかも観察しながら検証していきたいと考えています。

データ・アナリティクス入門

仮説から挑む数字の物語

仮説はどこから来る? 分析の基本は、まずさまざまなデータを比較することにあります。細かなデータやグラフを確認する前に、自分なりの仮説を立てることが大切だと感じました。 3つの軸は何が違う? ここでは「プロセス」「視点」「アプローチ」という3つの軸が重要です。プロセスでは、目的を明確にし、仮説を立て、データを収集して、その仮説を分析により検証します。視点については、インパクト、ギャップ、トレンド、ばらつき、パターンなどに着目します。そしてアプローチとして、グラフや数字、数式を活用する方法が挙げられます。 可視化で何が分かる? 比較のための可視化には、数字に集約する方法、目で見て把握できるようグラフ化する方法、さらには数式にまとめる方法があり、状況に応じて適切な手法を選ぶことが効果的です。 代表値はどう見る? また、データを見やすくするためには「代表値」と「分布」を確認することがポイントです。代表値には単純平均、加重平均、幾何平均、中央値などがあり、ばらつきを把握するには標準偏差が有用です。特に、95%のデータが含まれるという2SDルールは、分析の信頼性を判断する際に役立ちます。 ノーム値は意味ある? クライアントのノーム値を算出して、予算シュミレーションに活用する手法も魅力的です。さらに、業界ごとにどの枠が効果的か比較検証することで、より適切なアプローチを模索することが可能だと思います。 実数値で検証できる? 実際のデータを利用してノーム値を算出する試みは、非常に価値があると感じます。社内にある関連データの算出方法や分析手法を参考にしながら、実数値での検証を進めることで、より実践的な知見が得られるでしょう。

データ・アナリティクス入門

平均だけじゃ語れない真実

平均値だけで判断? 平均値は、データのばらつきを反映しないため、平均値近辺に多くの数値が存在するとは限らず、両極端な数値が混在している場合もあります。そのため、平均値だけに頼ると正確な分析が難しくなることがあります。 標準偏差はどう見る? 標準偏差を加えることで、数値の分布やばらつきを把握することができ、平均値と合わせてデータの傾向を見極めるのに有用です。実際、ある施策の効果検証で前後の数値を単に比較した際には、有意な変化や傾向が見受けられず困惑した経験があります。しかし、標準偏差を算出して分布図に落とし込めば、より明確な傾向が掴めたかもしれないと感じました。 代表値の使い分けは? また、代表値の使い分けにも工夫が必要です。単純平均の他に、値ごとに重みを付けた加重平均、成長率や比率を評価する際に有効な幾何平均、そして外れ値の影響を受けにくい中央値を適宜使い分けることで、より正確な傾向分析が可能となります。 具体例はどう見る? たとえば、男性の育児休業取得日数については、年間の平均値だけでなく、外れ値として極端な値が含まれる場合には中央値を用いて経年の傾向を把握します。さらに、法改正の影響で急増している取得率の増加率を幾何平均で算出し、次年度以降の予測やKPIの設定に活かすといった工夫が重要です。 現業務を再確認? 現在の担当業務においては、従業員の健康診断データ、施策実施前後の変化、女性管理職比率の推移、男性育休取得率の推移など、今回学んだインパクト、ギャップ、トレンド、ばらつき、パターンといった視点およびグラフ、数字、数式といったアプローチを用いることで、見落としがちな傾向や変化を改めて確認することが求められます。

データ・アナリティクス入門

分析手法でビジネス課題を解決!

問題発見に必要な分析とは? ビジネス上の問題や課題を発見するためには、影響の大きい部分から分析を始めることが重要です。そのため、現状を可能な限りヌケなくモレなく構成要素に分解する必要があります。特に事業収益を分析する際には、損益計算書が優れた例となり、経費がMECE(Mutually Exclusive, Collectively Exhaustive)に分解されています。 顧客属性分析で成功するには? 私の業務であるプロモーションにおいても、顧客属性や売上の構成を分析し、ターゲットとすべき顧客セグメントを抽出するのに役立ちます。売上や利益を伸ばすためにどのセグメントに焦点を当てるべきかという課題に対して、この方法は非常に有効です。しかし、広告媒体の効果検証には、ユーザーのタッチポイントが単一媒体に留まらないことから、複雑な分析が必要であるため、必ずしも適しているわけではありません。 ターゲティングの優先順位は? 具体的な分析手法としては次のようなものがあります。まず、店舗単位で顧客と問い合わせユーザーの住所や所属の件数を割り出し、ギャップが多いほど見込み顧客が多いと考えられるため、これを検証します。また、顧客の所属数と自社客のシェア率を把握し、優先的に取り組むべき所属を抽出します。ただし、店舗からの距離、競合の立地、ターゲット層の志向などにより、シェア率が低いセグメントが必ずしも優先順位が高いとは限らない点に注意が必要です。 Webと商品の相性をどう見るか? さらに、Web上での申し込み傾向を分析し、特定のカテゴリーで商品とWebの相性が良いかを分析することも重要です。これにより、より効果的なプロモーション戦略を立てることが可能になります。

データ・アナリティクス入門

悔しさを力に変えた成長の軌跡

社員評価はなぜ低い? 最近、私は経営層に対して、社員の口コミ評価が低いという問題に関する提案を行いました。分析の結果、「社員の相互尊重」、「社員の士気」、「人材成長への長期投資」という3つの項目が他の要素と相関しており、影響度が高いことが明らかになりました。また、これらのスコアは他社と比較しても低い状況です。こうした背景から、組織のソフト面(例えば、コミュニケーションの不足など)が問題の原因ではないかと考えました。 実施後の効果は? 提案内容では、1on1研修の実施や外部の相談窓口、メンター制度の導入などを挙げ、各施策実施後にエンゲージメントサーベイを通じて効果を定量的に検証し、次の対策を検討する流れを示しました。具体的な施策の順序については意見をいただきましたが、前段階の詳細な分析やストーリー構築が好評を得たため、今後の企画に繋げていく意欲が湧いています。 学びはどう生かす? また、今回の学びを振り返る中で、いくつか印象深い点がありました。 ①【悔しさをバネに復習&活用】 最終ライブ授業で理解が追いつかない部分が多く、情けなさと悔しさを感じながらも、その感情を忘れずひとつひとつ丁寧に復習し、実務で活用していく決意を新たにしました。 ②【仲間とのつながりを大切に】 ここで出会った仲間との別れは寂しさを感じさせますが、いつかまたどこかで再会できるよう、日々変わらず努力していきたいと考えています。 ③【学びを伝え、学び続ける】 社内で自主的に学びの普及活動を行う中で、一緒にチャレンジしてくれる仲間が増えていることに喜びを感じています。私自身も、今後さらにクリティカルシンキングの講座を受講し、知識やスキルの向上を目指していく予定です。

クリティカルシンキング入門

自分を問い直す学びの旅

本質はどう捉える? 物事を深く考える習慣が大切だと感じました。表面的な情報に惑わされず、「本質は何なのか?」と常に問いかける姿勢や、偏らない多角的な視点を持つことが重要です。柔軟なアプローチで物事に接することで、これまで気づかなかった発見に出会える可能性があります。また、感情に流されすぎると判断が困難になるため、冷静さを保つことも大切です。こうした過程を経ることで、質問する力や自信が育まれ、相乗効果が生まれると実感しています。正解にたどり着くプロセスを大切にすることこそが、クリティカルシンキングであると改めて感じました。 ITで何を感じる? 私はIT業界に従事しており、これらの考え方は特に問題解決やトラブル対応の場面で役立っています。エラーが発生した際は、まず「その本質は何か?」を追求し、要件定義や仕様書作成の際には、顧客の要望を正確に把握することに努めています。プロジェクトの意思決定では、複数の選択肢から最適な判断を導き出す際や、コードレビューでロジックの意図を確認する際にも、クリティカルシンキングが大いに活かされると感じています。さらに、リスク評価やセキュリティ対策など、さまざまな場面でこのアプローチが有用であると実感しています。 目標設定はどうする? まず明確な目標を設定し、どの業務や課題に適用するかを決めます。次に情報収集を行い、得られた情報が正しいかどうかを吟味します。その上で、疑問を持ち、批判的に検証する習慣を身につけることが大切です。会話の際には複数の視点を意識し、問題を小さな単位に分解して考えるよう努めています。感情と事実を分け、冷静に判断することで、継続的なスキル向上と努力を重ね、確実に成果を積み重ねていきたいと考えています。

データ・アナリティクス入門

ABテストで効果を最大化する方法とは?

問題解決ステップの理解をどう深める? 問題解決の4つのステップについて学んだ中で、特にWhy(原因分析)とHow(解決方法の立案)、そしてその手法としてABテストについて理解が深まった。ABテストはシンプルで運用や判断がしやすく、低コスト・低工数・低リスクで実行可能なため、非常に活用しやすい。実施の際には、目的設定、改善ポイントの仮説設計(何でも変えるのではなく、意図を持って比較しやすくする)、実行(十分なデータ量を確保)、結果検証の流れが効果的である。ただし、Web広告の場合には時間帯や曜日、プラットフォームなど他の条件が異ならないように注意が必要だ。 ABテストで問題解決の精度を高めるには? さらに、ABテストは「データ分析を通じて問題解決の精度を高める(Check)」と「仮説を試しながらデータを収集し、よりよい問題解決につなげる(Act)」を迅速に行うことができるため、非常に効率的だ。 例えば、メルマガでイベント告知を行う際にABテストを活用すれば、それぞれ訴求する内容を変えて、どの訴求ポイントが効果的かを検証することができる。しかし、解決案をひとつに絞るのは良くないので、SNS投稿など別のアプローチも併用して検証する必要があるだろう。 問題解決の全体像を把握するには? これまで、ランディングページ(LP)作成や広告を打つ際、一度行ったABテストの結果に満足して長期間使用していたことを反省。常に仮説を持ち、様々な角度から検証して改善していくことが必要だと感じた。また、問題解決の4つのステップ(What→Where→Why→How)の順番を意識し、単に解決策を考えるだけでなく、その全体像を把握することにリソースを費やすことを心がけたい。

マーケティング入門

訪日観光アプリ成功の鍵を探る

観光案内アプリのセグメンテーションとは? 観光案内アプリの事業化を検討する過程で、特に注意が必要だと感じたのは「セグメンテーションの切り口」です。訪日外国人旅行客を優先すべき顧客層として仮定しましたが、最終的には国内旅行者にも対象を広げたいと考えています。このとき、以下の変数を明らかにし、「購買行動に差が出る切り口を選ぶ」ことが重要だと学びました。 - 人口動態変数(例:年齢や性別) - 地理的変数 - 心理的変数(例:趣味、志向) - 行動変数(例:使用頻度) 6R基準でのターゲティングの重要性 ターゲティングについては、6Rという評価基準を新たに知りました。特に、Rankでは市場規模に加え、イノベーターやアーリーアダプターといった火が付きやすい層を選ぶ必要があると再認識しました。 - Realistic Scale - Rate of Growth - Rival - Rank(優先順位、影響力の強さを考慮) - Reach - Response これらの基準は、市場の魅力と自分たちが勝ち残れるかどうかを比較しつつ選びます。 データを基にしたセグメンテーションプロセス セグメンテーションはデータに基づいて行います。まず、「購買行動に差が出る切り口」を仮説立てし、それに応じてデータを取得します。その後、ターゲティングやポジショニングを以下の手順で進める計画です。 1. セグメント別の市場規模、成長率を推定する 2. 推定結果に優先順位をつける 3. 最も優先する市場について競合との差別化を仮決めする(ポジショニング) 4. 実際に検証する この一連のプロセスによって、より的確で効果的なアプローチが可能になると考えています。

戦略思考入門

スキルを活かした業務改善の冒険

規模と範囲の違いは? 規模の経済性と範囲の経済性について学びました。規模の経済性は、現在の業務においても馴染み深いものであり、生産を拡大してコストを削減し、生産効率を向上させる手法です。一方で、範囲の経済性は複数の製品やサービスを同時に生産することでコストを低減する方法です。そのコストダウンのアプローチにはデメリットもあるため、目的に応じた選択が重要です。 演習で何を実感? また、最後の演習では、与えられた数値や資料を基に仮説を立て、その仮説の正しさを検証することから始めました。この過程で、粒を出すことまではできても、それを整理するためのフレームワークの活用がまだまだ不十分であると感じたため、分析能力の向上が必要だと痛感しました。 中長期戦略はどう? 今後の中長期的な視点としては、新規事業への挑戦時に学んだ内容を活用します。新たにBPO・BPR事業に参入する際には、3C分析、SWOT分析、PEST分析を活用し、目的に合わせた組織形成や業務設計を提案することを目指します。 課内改革は何から? 短期的には、課内の組織編制の検討に学んだフレームワークを活用します。現在の業務における課題を明確にし、その課題解決のために適切な組織形態を提案できるようにしていきます。 分析の始め方は? 分析においては、定量的なデータが多いほど効果的であるため、定性的なデータも可能な限り定量化していくところから開始します。また、定性的なデータにおいても進捗が確認できる指標を検討し、目的やKPIを設定します。この設定に当たっては、現状把握を正確に行い、そのための課題や解決策を設計するために学んだフレームワークを活用していきます。

データ・アナリティクス入門

未来を切り拓く!仮説思考の力

仮説はどう整理する? 複数の仮説を立てる際には、その網羅性と分類が重要です。過去の失敗を分析する場合や、将来の事業の成功を予測する場合には、3Cや4P分析を活用して仮説を立ててみると良いでしょう。 データ収集はどうする? 仮説を裏付けるためのデータは常に存在するわけではありません。必要な情報を収集する場合、誰に何をどのように聞くべきかを慎重に考える必要があります。都合の良い情報だけを集め、他の可能性を排除しないようにする意識も大切です。この姿勢は「関心や問題意識のないところに仮説は生まれない」というマインドセットにも通じています。 市場特性の見極めは? 3Cや4Pの視点で現在のビジネス状況を正しく理解することが不可欠です。しかし、市場や業界、製品が特殊な場合には注意が必要です。例えば、医療業界ではエンドユーザーが患者であり、購入決定権を持つのは医療者であるケースがあります。広告制限のある製品については、適切な顧客設定と検証が必要です。自社だけでなく、関わるグループ施設市場を含めた3C、4P分析も有効です。 3W1Hで速さは向上? 仮説の3W1Hを繰り返すことでビジネススピードが向上します。過去と未来の仮説を分けて分析し、サイクルを回すことが必要です。たとえば、大型コンペの参加が有効だったか、その前後の効果や成功の分析、次回の見込みや採用率の変化が周囲に与える影響の予測を行います。 Excel作業改善のコツは? データの比較基準が異なる場合、データの取得、加工、単位や見え方の統一が課題になります。実際の分析開始前の準備段階でのExcel作業に多くの時間を費やすことが課題となっているため、この点のスキルアップが必要です。

データ・アナリティクス入門

本質を見抜くヒントがここに

フレームワークはどう活かす? ロジックツリーやMECEのフレームワークについて改めて学ぶ機会がありました。すべてを漏れなく、重複なく進めようとすると議論が停滞する可能性があるため、まずは注目すべき要所を決めた上でアイデア出しを行い、その後に漏れや重複を検証する方法が効果的だと感じました。実務上も、末端の階層にまで拘りすぎないことが重要だと思います。 戦略の組み立て方は? 戦略は「重要課題の特定とその課題を解決するための具体的な行動計画」と定義しています。そのため【What】で問題を明確化し、【Where】で問題箇所を特定し、【Why】で原因を分析し、【How】で解決策を立案するという順序が非常に大切だと感じました。正しい課題設定ができれば、その課題の半分以上は解決に近づいているという言葉にも共感するところです。 問題の構造は見えてる? 表面的な問題に目を向けがちですが、問題を構造的に捉えることが最も重要です。たとえば、全体の受注率だけでなく、個々の受注率や各セグメントごとの受注率、さらには失注要因などを多角的に分析しなければ、真因にたどり着くことは難しいでしょう。問題の構造を要素ごとに分解し、どの要素がトリガーとなっているかを可視化することが鍵だと改めて感じました。 具体化はどう進める? 面倒に思えるかもしれませんが、問題を構成する要素を頭の中だけでなく、文字や図で具体的に表してみることが大切です。手書きでメモを取ったり、マインドマップを作成するなどして、漏れや重複に気づけるよう工夫してみると良いでしょう。ただし、これらのフレームワークはあくまで道具であり、型にはめすぎたり神格化しないよう、柔軟に活用することが求められます。

「検証 × 効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right