データ・アナリティクス入門

データの先にある学びの秘密

講義内容はどう感じた? ライブ講義を拝聴しながら、ポイントを迅速に判断し整理する力がまだ十分でないと感じました。どのデータセットを扱う際にも、何を明らかにしたいのかという目的意識をしっかり持ち、ロジカルシンキングや仮説立案のスピードを高める必要があると痛感しました。大量のデータを扱う中で、解決策の発見に注力するあまり、次第に目的から逸れてしまうことが実務上でも生じるため、その兆候を早期に掴むことが重要であると改めて認識しました。 営業戦略はどんな課題? 営業データを活用した営業戦略の立案においては、成約率向上という課題に対して、これまでの商談データを基に再検証を行う必要があります。過去にはあまり意識されなかったデータの粒度の粗さや、文章化およびビジュアル化の不足が、組織全体の納得感に影響していたと感じます。具体的には、なぜ成約率が低いのか、セグメントごとや担当者ごと、そして営業ステップごとの課題を明確にし、それぞれの原因を検証した上で、効果的な解決策を導き出したいと考えています。 UX改善は何が必要? サービス利用データを活用したUX向上施策の立案では、SaaSサービスのアクセスログをもとに、どの機能が利用され、どの機能が利用されていないかを明確に分類することが求められます。使われていない機能については、導入時からの利用状況や徐々に利用が減少しているのかなど、その背景を整理しながら原因分析を行います。さらに、仮説を立てた上で改善策を検討し、場合によっては機能の廃止も含めた対応を実施するために、顧客へのインタビューなども通じて検証を進めていきたいと考えています。

リーダーシップ・キャリアビジョン入門

受講生が描く学びの軌跡

モチベーションってどうして? 今回学んだ内容は大きく2点あります。まず、モチベーションについてです。モチベーションは個々に異なるものですが、マズローの5段階欲求や動機付け・衛生理論などを通して、自身の現状を把握する方法を学びました。特に、なぜ働くのかという動機付けの本質を理解することが、効果的なインセンティブの活用に繋がると感じました。また、モチベーションが低い場合には、その理由を明確にし、どのように向上させられるかを検証する必要があると実感しました。一方で、モチベーションが高い場合においては、現状で十分なのか、あるいはさらに高い目標があるのかを確認していくことが大切だと思いました。 振り返りはどう機能する? 次にフィードバックについてです。振り返りの大切さを再確認するとともに、振り返りの環境整備や質問力の向上が不可欠であることを学びました。数字だけの確認に留まらず、本人がどのように考え、どこで迷い、何がうまくいったのかといった具体的な点を掘り下げる質問が重要だと気づきました。これにより、課題の発見や他部門への展開が可能になると考えています。 1on1ミーティングでどうする? また、14日に予定されている1on1ミーティングに向けて、今回学んだ内容を復習し、先月の振り返りのための具体的な質問事項を事前に作成する予定です。数字的な成果について、できたこととできなかったこと、そしてその理由を整理し、モチベーションのフレームワークを実際に活用してみたいと思います。さらに、効果的なコミュニケーションを実現するために、聞き出す環境や信頼関係の構築も意識して取り組んでいきます。

クリティカルシンキング入門

切り口が変える数字の物語

数字の意味は何か? 数字が持つ意味をより深く理解するためには、まず情報を分解して、その解像度を上げることが重要です。一つの視点だけでなく、複数の切り口から現象を分析することで、より正確な現状把握に繋がります。 結論前の検証は? 具体的には、一つの傾向に満足するのではなく、さらに他の可能性を探る意識を持つことや、得られた分析結果からすぐに結論を出すのではなく「本当にそうなのか」を丁寧に検証する姿勢が求められます。また、頭で考えるだけでなく実際に手を動かし、様々な視点からデータを見直すプロセスも大切です。 MECE活用で分析は? さらに、分析を行う際にはMECEの考え方を取り入れることが有効です。具体的には、階層、変数、プロセスという視点から、物事を漏れなく、重複なく整理していく手法が挙げられます。たとえば、プログラムの参加者数の伸びを検討する場合、年齢だけでなく居住エリアや参加プログラムの種別といった観点から属性を分析することで、より多角的な理解が可能になります。 課題整理はどう進む? また、自身の業務上の課題を明確化するためにも、評価の視点が抜けや重複なく組み込まれるよう、MECEを活用して細分化し、その対応力を数値化する手法は効果的です。担当している事業プログラムの認知度についても、過去数年間のデータを大学別、学部別、学年別、応募種別などの切り口で集計し、グラフ化することで、現状と改善点を明確にできます。もし、最初の分析で十分な結論が得られなかった場合には、別の切り口から再度分析を行い、想定される課題について漏れや重複がないよう整理することが大切です。

クリティカルシンキング入門

問いに挑む毎日の成長

今の問いは何だろう? イシューとは、今ここで答えを出すべき問いのことです。イシュー設定の際には、「問いの形にする」「具体的に考える」「一貫して抑え続ける」という3つのポイントを意識する必要があります。まずは、問いが何であるかをはっきりさせることが大切です。 全体で課題を共有する? 次に、その問いを常に意識し続けることで、解決すべき課題が見失われないようにします。そして、組織全体でこの問いを共有することで、皆が同じ方向性に向かって課題解決に取り組むことが可能となります。適切なイシュー設定は課題解決の成功に直結するといえるでしょう。 手法で問題を割り出す? また、これまで学んできたロジックツリーやプロセス分解の手法を活用することで、イシューを導き出す方法もあります。例えば、売上構成をロジックツリーで細かく分析し、問題を特定の要素(例えば、客数の少なさ)に収束させるといったやり方が考えられます。 ユーザー心理は理解済? さらに、自社サービスのウェブサイトに訪れたユーザーがどのような課題を感じ、最終的にどのような体験をしているのかについて、ユーザビリティテストを行わずとも自らイシューを見極めることが可能です。ユーザー行動に注目し、どの画面で何がわかりにくいのか、どのような心理を引き起こしているのかを把握することが重要です。 仮説検証の流れは? 具体的な取り組みの手順としては、まずチームで最も解決すべき問題(イシュー)を特定し、そのイシューに基づいてデータを精査します。その後、仮説検証を繰り返すことで、実際の課題や障壁を明確にしていく流れが効果的です。

データ・アナリティクス入門

データ分析で見つけた新たな視点と仮説の立て方

データ分析の進歩を実感 これまでの実践演習のおかげか、ライブ授業の例題の際、自分が受講以前よりデータの着目ポイントがわかるようになったこと、仮説を複数出すことが怖くなくなっていたことに気付きました。また、ライブ授業の中で出てきた「やみくもに分析しない」という点も、性格上ハマりやすい沼だと思うので、優先順位を考えつつリソース配分を意識しながら分析したいと思います。 ディスカッションでの学び方とは? ディスカッション形式で例題を解くことで、人によってデータの見方や感じ方が違って面白かったです。一人でこっそり分析するよりも、複数人で話し合いながら進める重要性を感じ、実務でも活かそうと思いました。 新規事業におけるフレームワーク活用 新規事業を担当しており、これから多くの施策や企画を立ち上げる機会が増えると思うので、その際には効果的な施策を打ち出すために、問題解決のフレームワークを使って体系的に進めていきたいです。今回の講座で学んだ大きな収穫の一つは「振り返ることの重要性」です。グループワークを通して意見を交換し、その際に振り返りとして自分の考えをまとめる時間があったことが学びに繋がりました。施策を打った後も、その振り返りを必ず行い、次に活かせるようにしたいと考えています。 データをどのように活用すべき? 今後も引き続きデータ分析の講座や研修を積極的に受けたいです。実務レベルでは、常に仮説を持ち、複数の切り口からデータを分析・比較し、結果の検証を行うという順番を意識しています。一部のデータだけを見てすぐに判断しないように気を付けたいと思います。

デザイン思考入門

挑む受講生が描く学びの軌跡

どの手法が有効? 私の業務では、主に三つの手法を活用しています。まずA/Bテストでは、メール告知に取り入れる際に、カラーや情報の提示順序などの要素を変更しながら検証を行います。数値化可能なクリック率やコンバージョンの結果をもとに、効果を測定しています。 参加型はどう活かす? 次に、参加型デザインです。アンケートの回答からユーザー視点での改善点を抽出し、定期的に開催するセッションでは、複数のロイヤルユーザーの意見を自由に出してもらいながら改善策を模索しています。 インタビューで何を引き出す? さらに、インタビューも実施しています。購入の動機や使い方を詳しく聞き取り、限られた時間の中でユーザーの意見を引き出すためには、ファシリテーション技術が重要であると感じています。なお、インタビューでは、自分の仮説検証において予想と異なる結果になることも多々あり、大きな声を持つ一部の意見に左右されず、冷静な判断が求められると実感しています。また、求めるデータの種類に合わせて、最適な情報収集手法を選択することも大切です。 デザイン思考はどう磨く? デザイン思考については、明確なゴールが設定されているわけではなく、その時々で最高のものを作るために100%の力を注いでいる状況です。しかし、知れば知るほど「より良いものを」という気持ちが高まり、常にアップデートを重ねていくOSのようなものだと感じています。かつて先輩から「我々が作るものは常にβ版である」との言葉をいただいたことが、決して満足せず成長し続ける意欲に繋がっていると改めて考えるきっかけとなりました。

データ・アナリティクス入門

仮説で見える新たな可能性

仮説の意義って何? この教材では、仮説の基本的な意義とその分類について学びました。結論の仮説と、問題解決の仮説に分かれており、特に後者は「What?→Where?→Why?→How?」というプロセスで問題にアプローチする点が印象的でした。 検証マインドは必要? また、検証マインドの重要性や、説得力の向上、関心・問題意識の向上、スピードアップ、そして行動の精度向上といった効果も理解でき、実務における検証のプロセスがいかに大切かを再認識することができました。 SNSで成果は出る? 実際のSNSキャンペーンでの活用例として、たとえば「ソーシャルメディアAが最も広告費対効果に優れているのでは?」という仮説を立てる方法が紹介されていました。過去の広告データを徹底的に分析し、どのプラットフォームが最もコスト効率が良いかを比較。その後、小規模なA/Bテストを実施して実際のパフォーマンスを検証し、最も成果が出たプラットフォームに予算を集中させるという具体的な手順です。 フレームワークは有効? さらに、仮説のフレームワークを実業務に当てはめるための補助ツールとして、4P(Product, Price, Place, Promotion)や3C(Company, Customer, Competitor)、そして問題の本質に迫るための5Why(なぜ?を5回繰り返す)といった手法が紹介され、実践的な視点が取り入れられていました。これらのフレームワークは、課題の分析や市場での自社のポジションの確認、そして問題の根本原因の探求に大いに役立つと感じました。

戦略思考入門

戦略再検証で輝く学び

実行前に何を見直す? 施策を実行する際には、持続性と模倣されにくさを意識することが重要だと感じました。良いアイディアが浮かぶと、その実行方法にばかり目が行きがちですが、一度立ち止まり、顧客価値、競合との差別化、実現可能性、費用対効果という観点からしっかりと分析することが求められます。 低コストの真価は? 戦略立案においては、上位層に受け入れられやすい低コスト化戦略に安易に頼る傾向があるものの、ターゲットを絞り自社の強みを十分に考慮することで、より適切な戦略選択が可能になることを学びました。実際に、私が関わっているプロジェクトでは低コスト化が重視されていますが、今回の学びを活かして、その方針が本当に最適かどうかを検証してみたいと思います。低コスト化は顧客が求める価値の一側面に過ぎず、購買決定要因はそれだけではないはずです。顧客の困りごとや、他に提供できる価値は何かについて、学んだフレームワークを活用しながら戦略を見直す必要があります。 目標価値はどう見る? まず、プロジェクトが掲げる目標が顧客にどのような価値を創出するのか、再検討を行います。その過程で、自社が他社に対して有利な点があれば、それを自社の強みや差別化の源泉として認識することが大切です。 顧客の課題は何? 次に、顧客の視点に立ち、彼らが何に困っているかを分析します。もし現在のプロジェクトの方向性が顧客の課題解決に適していないと判断される場合、顧客価値、競合との差別化、実現可能性を踏まえた上で、必要な施策をストーリーとして提案できるよう準備を進める必要があります。

戦略思考入門

業務集約で実現した驚きのコスト削減

市場と戦略は合致? スケールメリットといったビジネス戦略の定石を用いる場合、自社でそれが効果的に機能するかを正しく分析することが重要です。戦略を決定する際には次の段階を踏むことが大切です。まず、市場と自社の状況を分析し、自社が置かれている環境を正確に理解します。次に、定石となるビジネスのメリットやデメリットを検証し、比較します。最後に、効果が見込めると判断できたら実行に移ります。 業務集約の効果は? 自部署の業務では、100以上の拠点の業務を1拠点で代行するという形で集約しています。この業務集約は、製造業とは逆向きのスケールメリットを示していると考えられます。例えば、各拠点で個別に行っていた事務作業を1か所に集約することで重複作業を省き、コストダウンを実現しています。また、特定のメンバーで業務を集約することで習熟度が向上し、更なるコスト削減が可能になっています。さらに、AIや自動化技術を導入することで業務効率を高め、さらなるコストダウンが促進されています。 収益拡大の鍵は? ここで得たノウハウをしっかり蓄積し、それをコアコンピタンスとして外部収益の獲得につなげることを目指しています。現在進めている自社内の業務集約・効率化については、さらなる集約可能な工数を探求し、高品質化につなげていくことが求められます。また、外部収益獲得に向けてはターゲットとなる顧客層を明確にし、受託可能な業務範囲を想定して、必要な技術に関する知識を得るために注意を払うことが大切です。ターゲットを明確にし深掘りしていくことが、コアコンピタンスの形成に繋がるでしょう。

データ・アナリティクス入門

データ分析で未来のトレンドを掴む方法

比較で何が分かる? データ分析は、比較することで初めて意味が生まれます。そのため、分析の目的に応じて適切な比較対象を設定することが重要です。データ分析の目的を明確に整理し、関係者間で共通認識を持つことが大事です。漫然とデータを分析するのではなく、目的達成に必要な事項を洗い出し、仮説を立て、仮説の検証としてデータの収集と加工を行うといった順序に従って進めていくことが望ましいです。 販売動向はどう見る? 具体的には、自社や他社商品の販売動向とその結果の要因分析を行い、次の新商品開発に生かすことが挙げられます。売れている商品の共通点やトレンド、どのような顧客にどのような商品が売れているのかを購買データから分析します。そして、売れない理由についてアンケート調査の結果を分析します。また、売上が低迷している商品のリニューアルに向け、売上低迷の要因を購買者層の変化から分析し、競合品の販売動向や購買者動向の分析、アンケート結果の分析を通じて方向性を示します。 調査結果は効果的? さらに、商品コンセプト調査結果やアンケート調査の効果的な分析により、商品案の軌道修正を行い、説得力を高めることも必要です。 前段階で成功策は? これらのプロセスを進めるにあたっては、アンケート調査票の作成やデータ収集の前に、目的の整理と関係者間での共有を行うことが不可欠です。そのうえで、必要な事項を洗い出し、仮説を整理し、収集したデータの加工の方法までを想定し、全体像をイメージして作業を進めることが大切です。データ収集の前段階を丁寧に行うことが、成功の鍵となります。

戦略思考入門

未来を変える差別化のレシピ

ターゲットの見定め方は? 差別化の考え方について、まず「ターゲットとなる顧客を定めること」、「顧客の立場から競合を意識すること」、そして「実現可能で持続性のある施策を構築すること」が重要であると学びました。これまで自社の差別化のターゲットや、顧客にとっての競合がどこかを明確にしていなかったため、今後はこれらをはっきりさせることで取り組むべき課題を明確化し、具体的な行動に移していきたいと考えています。 VRIOをどう活かす? また、自社の強みを活かした差別化のために「VRIO」というフレームワークを学びました。この枠組みを活用して、顧客に意味があるか、真似されにくいか、組織全体で実行できるか、そして持続可能な差別化が可能かどうかを検証していくつもりです。 競合をどう分析する? これまでは、差別化を単に競合とは異なる商品やサービスを提供することと捉えていました。競合店の状況も戦略として十分に考慮できていなかったため、今後はフレームワークを用いて、社会情勢、業界・競合の動向、市場や顧客のニーズ、さらには自社の強み・弱みを総合的に分析し、競合の施策に対してどのような意味があるのかを多角的な視点で検討していきます。 広い視野で戦略は? さらに、マーケティングリサーチを単に競合の施策を把握するためだけでなく、社会情勢、業界全体、市場や顧客の動向を幅広く捉える手段として活用し、自社が取るべき戦略の検討に結びつけていく重要性を実感しました。今後はこうした広い視野で自社と競合の施策を理解し、より効果的な戦略立案に努めていきたいと思います。

データ・アナリティクス入門

課題を分解!納得解決への道

課題の裏側は何? 課題に取り組む際は、各要素を因数分解し、ステップごとに整理することで納得感が高まると実感しています。今回の課題も、最初はアンケートによる満足度の低下に着目しましたが、さらに深堀りすることで、事業の柱である上級クラスの今後の採用方針まで課題が波及していることが見えてきました。目の前の問題を一気に解決しようとするのではなく、その課題から導かれる仮説をひとつずつ丁寧に検証し、対処していく姿勢を大切にしています。 分析の進め方はどう? また、業績に直結する数字の悪化など、すぐに解決できる施策を探すことに注力しがちですが、分析のステップをじっくり進めると、チームビルディングや個々の業務の進め方など、すぐには表面化しない根深い問題にも気づくことが多いと感じています。こうした課題に対して、全員が納得しながら解決に向けて取り組むためには、段階を追って問題解決を進めることが重要であり、わかりやすいアプローチが求められると感じました。 仮説の説明はどうなってる? 自分の考えた課題と、分析によって得られた仮説や解決策を順を追って説明することで、関係者にも理解しやすくなると考えています。また、一度に説明しても伝わりにくいため、各会議の場でテーマごとに議題として取り上げ、直接関係するメンバーに課題を提示するようにしています。例えば、ある会議では売上改善のための施策や単価、人数といった具体的な対策、さらにターゲットとすべき客層や現行の営業アプローチの方法など、段階的に議論を進めることで、最も効果的なアプローチを模索しています。

「検証 × 効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right