データ・アナリティクス入門

洞察が導く実践の軌跡

ABテストの注意点は? ABテストは、広告制作や新商品のパッケージ調査など、クリエイティブの評価でよく用いられる手法です。実際の業務で使用していたためなじみがありましたが、条件を揃える部分で見落としがちな点があるため、実践時は特に注意しなければならないと感じました。 打ち手比較の意義は? また、打ち手の比較に関しては、単なるデータ分析にとどまらず、業務上の課題解決のための思考パターンとしても応用可能だと実感しました。物事の意思決定における「比較」は、非常に重要なプロセスであると改めて認識しました。 課題継続検証は? 業務では常に課題が発生するため、まず現状を把握し、比較のためのデータを精査しながら継続して検証することが重要だと考えます。さらに、プロセスを細分化して仮説を立て、実際に試していくというルーティンを、どの状況においても意識して取り組んでいきたいと思います。

データ・アナリティクス入門

データ比較で見える改善のヒント

データ分析に何を学んだのか? データ分析とは、比較することが重要であると学びました。特に、異なる要素を比較する際には、同じ条件下で行うことが大切です。また、周囲に結果を共有する際には、グラフを活用して直感的に理解できるアウトプットを作成する工夫も必要です。 クライアントのフィードバックはどう活かす? 私はサポート業務を担当しており、クライアントからのフィードバックをアンケート形式で収集しています。昨年との比較や、NPSとドライバー項目の相関を分析することで、組織の強みや弱みを明確に把握し、課題を抽出して解決に向けたアクションを実施していきたいと考えています。 定性的なデータの課題は? これまで、フィードバックから得られるのは定性的なデータのみで、昨年との比較やスコアが低下した理由の分析が不足していました。今後は、これらの点を深掘りできる力を身に付けたいと思います。

クリティカルシンキング入門

実践力が即戦力に!ケーススタディの効果絶大

業務に活かせる実践的学習とは? 学習内容が非常に実践的で、即座に業務に応用できる点が素晴らしかったです。特に、ケーススタディを通じた学びが深く、現実のビジネスシーンにおいても非常に有益であると感じました。 難しい点はどのように克服する? また、講義の進行がスムーズでわかりやすく、講師の方々の説明も丁寧で具体的でした。疑問点に対するフォローも充実しており、安心して学習を進めることができました。 他の学習者とどう交流する? さらに、同じように学ぶ仲間とのディスカッションや交流も刺激的で、新たな視点を得ることができました。オンラインという特性を活かして、さまざまな地域から参加している方々と意見交換できる点も魅力的でした。 総じて、このプログラムを通じて自身のスキルアップだけでなく、新たな人脈を築くことができ、大変満足しています。これからも継続的に学び続けたいと思います。

アカウンティング入門

知識をカタチにする瞬間

どう実践すべき? 学んだ概念をただ理解するだけで終わらせず、実生活に小さく適用して「使える知識」にしていく姿勢を大切にしています。特に、物事を構造的に捉える力と仮説思考を自分の強みとして活かし、まず結論と要点を短くまとめる習慣を身につけるようにしています。 なぜHRと結びつける? また、学んだ知識を自分の専門領域であるHRと意図的に結びつけ、日々の業務で実践しながら知識を深める努力を続けています。知識を自分の血肉にするため、次の3つの実践を心掛けています。まず、毎日5分だけでも実生活の事例に当てはめて考えること。次に、得た知識を短くまとめ、他人に説明するミニアウトプットを習慣化すること。そして、必ず自分の専門分野であるHRと1つだけでも関連付けながら考えることです。 小さな実践は効果的? このような小さな実践の繰り返しが、本当の知識の定着につながると考えています。

データ・アナリティクス入門

グラフで解く学びの秘密

データ表現はどう? 数値だけではバイアスや誤読が起きやすいと改めて感じました。適切な表現方法でデータをビジュアル化することで、データの中身や意味への理解が深まると実感しています。また、幾何平均や加重平均の計算方法を再確認するとともに、有意差95%に関する知識も大きな学びとなりました。 グラフってなぜ大切? 根拠を示したり相手と共通認識をもつためには、グラフやその他のビジュアル表現が重要です。プレゼンテーションで用いるだけでなく、自分自身がデータ内容をより深く理解するためにも、積極的にビジュアル化を活用していきたいと思います。 営業でどう伝える? 今後、営業成績や契約管理など、数値管理が重要な業務において、ビジュアル化は全員の共通認識を促す有効な手段となるでしょう。また、営業現場においても、説得力を高めるために、数字とグラフの可視化をうまく活かしたいと考えています。

データ・アナリティクス入門

数字から見える学びの世界

データの傾向は見えますか? データはビジュアル化することで多くのことが見えてくると感じています。そこで、まずは業務の件数や週平均、月平均などの数値を確認し、どのような傾向があるのか把握することから始めたいと思います。 年次データのばらつきは? 次に、年単位でのデータをヒストグラムに落とし込み、ばらつきや偏りがあるのかを検証してみたいです。年代ごとの偏りから、ある種のマーケティング施策が影響しているのではという仮説を立てることができ、実践演習で学んだ知識が非常に役立ちました。 平均値の使い分けは? また、単純平均だけでなく、加重平均や幾何平均など、状況に応じた平均値の使い分けが正しい分析につながるということを再認識しました。さらに、数字のばらつきを評価するために、標準偏差のような指標を実際の業務データで算出し、その計算方法や数字の感覚を磨いていきたいと考えています。

データ・アナリティクス入門

卒業生もお宝!データ分析で見えた新視点

ファネル分析の新たな視点 最後に学んだファネル/ダブルファネル分析は、とても印象に残りました。感覚的にファネル分析は理解しており、業務で使っていたのですが、購入後の顧客の動きを分析するためにダブルファネル分析が効果的であることが、新たな知識となりました。 卒業生追跡の重要性とは? 私は大学職員として、在学生の動きを分析することがまず重要ですが、卒業後の卒業生の動きを追いかけることも同様に重要だと感じました。大学の評価を高めるためには、卒業生が社会で自分の大学をどのようにアピールしてくれるかが今後の鍵となるのです。 意見収集体制の構築方法 在学生だけでなく、卒業生の連絡先もストックしておき、大学に対する意見やフィードバックを常に受け取れる関係を築いていきたいと思います。また、大学内だけでなく、外部の意見も蓄積してデータ化する体制を構築する必要があると考えています。

クリティカルシンキング入門

見せ方で引き出す活発な意見交換の力

グラフ作成の重要性とは? 読み手の目の動きや理解しやすさを考慮しながら、丁寧にグラフを作成する重要性を学びました。作成時間に制約がある中で、見せ方にこだわりすぎることはできませんが、最小限の努力で最大の効果を発揮するための思考が養われました。 活発な意見交換を促すには? 年度計画策定時の振り返りや顧客向けイベント企画のプレゼンテーション作成時には、多様かつ適切な見せ方によって、活発な意見交換を促すことができます。これにより、メンバー同士や顧客との円滑なコミュニケーションが図られ、さらなるアイデアの創出を目指しています。 誰にでも伝わる工夫とは? また、直接その業務に関わっていない方々にも、スムーズに理解してもらい、訴求力を備えた内容にするために工夫を凝らしています。文章や情報の羅列に終わらせず、見せ方に注意を払い、配慮の行き届いたものを提供するよう努めています。

データ・アナリティクス入門

平均値から見える数字の世界

代表値と散らばりは? 今回の研修では、動画の代表値として単純平均、加重平均、幾何平均、中央値について学びました。それぞれの特性や使い方を理解し、また、代表値だけでなく標準偏差などを用いた散らばりの解析も重要であることを再認識することができました。グラフ化する前には、まず仮説に基づいて適切な数値を選び出し、データの理解を深める必要があると実感しました。 業務にどう活かす? 業務においても計数を扱う際には平均値を使う機会が多いですが、その使用が本当に妥当かどうかを検討する習慣を身につけることが大切だと考えています。今回学んだ内容をもとに、平均値や散らばりを踏まえてグラフ化することで、自分自身が作成したグラフだけでなく、他者が作成したグラフについても、その値や構成が適切かどうかを確認できると感じました。こうした取り組みは、全体のデータの精度向上につながると考えています。

データ・アナリティクス入門

比較で見つける学びのヒント

比較はなぜ大切? 分析において、比較が本質であることを再認識しました。何かと比較することで評価が可能になり、比較しなければ正確な評価は得られないと実感しました。 同条件比較って? また、評価の際には同一条件、すなわち「Apple to Apple」の比較を意識する重要性も感じました。分析の第一歩は仮説の立案から始まり、その仮説を検証するために、何と何を比較すべきかを明確にする点が印象的でした。 業務分析の極意は? 日々の業務では、自分自身のデータ分析はもちろん、他のメンバーや関係者が行った分析も、このプログラムで学んだ体系化された論点を用いて見極め、改善点を具体的に指摘できるよう努めたいと思います。 爆撃機から学ぶ? さらに、学習事例として紹介された爆撃機の事例は、一見とらえにくい対象にどのように着目し、考察を展開するかについて大変興味深く感じました。

データ・アナリティクス入門

フレームワークで未来を拓く

3C・4Pの活用法は? 3C・4Pなどのフレームワークを活用して仮説を立てる重要性を改めて実感しました。なんとなく思いついた仮説では、他に考えられる可能性を見逃してしまう恐れがあります。一方で、フレームワークを用いることで、仮説の検証に必要な分析も効率よく進められるようになりました。 株式事務の仮説立案は? また、株式関連の事務においては、過去の経験や従来の分析結果に捉われず、さまざまな視点から仮説を立て、検証していくことが大切だと感じています。そのため、3C・4Pを活用し、複数の仮説を意識しながら業務に取り組むよう努めています。 実務検証の流れは? さらに、実際の業務では4P・3Cのフレームワークを使って分析を行い、課題に対して複数の仮説を出すことを徹底しています。そして、仮説の検証に必要なデータの抽出や分析も合わせて行うことを意識して作業を進めています。

データ・アナリティクス入門

アンケート成果を活かすデータ分析術

アンケート設計のコツは? デジタル化を進めるにあたり、今後お客様アンケートを実施する予定があります。今週学んだことを活かして、アンケートの集計に役立てたいと考えています。アンケートには定性的および定量的な質問がありますが、定量的な質問に関しては、単に平均値のみでなく、中央値や最頻値も確認し、傾向やばらつきを把握することが重要です。質問を設計する際には、事前に仮説を立て、それを証明するための最小限の質問を設定することが求められます。 結果報告の工夫は? まずは直近のアンケート業務で学びを実践し、集計後にはそれをもとに報告を行う予定です。その際には、結果をどのようにビジュアル化して示すかを考慮します。単純に平均値や最も多い回答を示すだけでなく、仮説に基づいたアンケート設計により、得られた結果から示唆を引き出し、それに基づいて施策をストーリーとして検討することが大切です。

「業務」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right