データ・アナリティクス入門

振り返りで開く未来への扉

データ分析の意義は? データ分析のプロセスや考え方の重要性を改めて理解することができました。自分が何を目指し、そのために何を把握し、どのように行動すべきかという点を再考するきっかけとなりました。 フレームワークはどう? 今後は、学んだフレームワークや考え方をビジネスの現場で積極的に活用していく必要があると感じています。以前業務で行ったデータ分析を、今回習得した知識をもとに再挑戦し、実践を通して理解を深めたいと思います。 知識を共有する? また、自分の理解度を確かめるためにも、学んだ内容を他のメンバーに伝えることが重要だと考えています。まずは、自身が学んだことを共有する場を設け、さらに他のメンバーもスキルアップできるよう、実践の機会を増やしていくつもりです。

データ・アナリティクス入門

自ら選ぶデータ分析の真髄

データ分析から何が学べる? データ分析を通じて、体系的な課題解決方法を学びました。実際に扱うデータは自ら補完する必要があるため、比較意識を持って必要な情報を選定するスキルを高めたいと考えています。 応用力はどこから来る? また、業務全般に応用可能なフレームワークや思考パターンを習得できたと感じています。単一の業務でなく、思考が求められる多くの場面で今回の学びを実践し、常に意識を持って取り組んでいきたいと思います。 課題対策は具体的に? 違和感や課題に直面した際は、確認を含む仮説の立案やプロセスの細分化を意識して行いたいです。分析フェーズでは、比較を通じて実証を目的としたデータ抽出や多角的な視点からの提案を心掛け、より具体的な検証ができるようになりたいと考えています。

データ・アナリティクス入門

仮説×4W1Hで開く思考の扉

なぜ仮説が必要? データ分析の基礎として、仮説設定と4W1Hを意識した分析の重要性を改めて認識しました。特に、仮説設定はつい忘れがちであるため、意識的に仮説を立てることが重要だと感じ、今後の業務に積極的に活かしていきたいと思います。 4W1Hをどう捉える? また、データを活用した分析の機会が多い中で、仮説思考を特に大切にしていく必要があると考えています。これまで漠然と4W1Hを当てはめるだけに留まっていた部分を見直し、意識的に4W1Hを活用した分析を進めるよう心がけたいと思います。 思考力はどう磨く? そのために、まずは論理的思考力の向上が不可欠と感じています。関連書籍を読み進めることで知識を深め、さらにビジネスフレームワークの習得にも努めていきたいと考えています。

クリティカルシンキング入門

論点で切り拓く未来への挑戦

講義の反省点は? 講義全体を振り返る中で、自己の意識に偏りがあったことを改めて実感しました。今後は、常に論点(イシュー)を意識し問い続けるとともに、ピラミッドストラクチャーやロジックツリーを活用し、MECEの原則に基づいて課題や問題を漏れなく、かつ重複せず整理しながら論理的に解決することを心がけたいと思います。 日常業務の課題は? また、日常業務で直面する問題や課題については、経験や勘に頼るのではなく、データと事実に基づいた論理的な思考を徹底する必要があると感じました。そのため、常に論点を念頭に置き、ピラミッドストラクチャーやロジックツリーを用いて体系的に整理し、根本原因や真因にまでたどり着けたかを振り返りつつ、再発防止の仕組みを確実に運用していきたいと考えています。

データ・アナリティクス入門

業務の壁、ロジックツリーで突破

現状の課題は何? 現状の業務はマンパワーに依存しており、その結果としてメンバーが常に疲弊していると感じています。これまでいろいろ検討してきましたが、改めて状況を客観的に把握するため、今回学んだロジックツリーを用いて現状の課題を書き出そうと思いました。また、問題点が十分に認識されず、日々のルーチン業務に流されがちなため、what/where/why/howを意識し、積極的に問題提起を行いたいと考えています。 解決策はどう考える? すぐに業務に結び付けるためには訓練が必要だと感じています。そのため、教材で示されたコツや留意点を参考に、身近な問題解決にロジックツリーを活用する取り組みを始めます。さらに、解決の切り口となる項目をできるだけ多く洗い出すよう努めていきたいと思います。

マーケティング入門

仲間と挑む、マーケの実践記

認識をどう統一すべき? マーケティングの多様な解釈を踏まえ、実際の業務において仲間と認識を統一する必要性を強く感じました。また、セリングとマーケティングの違いを知ることができ、進め方によってはマーケティングではなくセリングになってしまう点も学びになりました。 活用法はどう考える? 具体的な場面でどのように活用するかはまだイメージがつかめていませんが、当社は具体的な製品ではなく、人やサービスを提供する立場にあるため、他社との違いを出すべく、日々変化する市場の動向から顧客が何を求めているのかを継続的に分析していきたいと考えています。 初心者はどう学ぶ? マーケティングに関しては未経験のことも多いため、様々な手法や過去の経験を交流を通じて身に着けていければと思います。

データ・アナリティクス入門

Excel実践で磨くデータ思考

データ分析の意味は? データ分析では、比較と独自の観点が価値を生むと感じました。基本的な内容でありながら、Excelでの実践的な手法を学ぶ中で、自分の思考プロセスが整理され、視野が広がったと実感しています。 フレームワーク活用の秘訣は? 今回学んだフレームワーク、たとえばファネル分析や3C、4Pなどを中心に活用したいと考えています。定期的に振り返りを行うことで、より効果的な比較ができるよう意識して取り組むつもりです。 転職後の展望は? さらに、業務においても今回の学びを基礎として活用します。今後、データマーケティング職への転職が決まっているため、壁にぶつかったときは学んだフレームワークや思考プロセスに立ち返り、より広い視野で問題に取り組む方針です。

データ・アナリティクス入門

実務に繋がる問題解決ストーリー

問題解決の基本は? 今回の総合演習では、「問題の明確化→問題箇所の特定→原因の分析→解決策の立案」という基本プロセスに立ち返り、学習に取り組むことができました。また、解決策を検討する際には複数の選択肢を洗い出し、それぞれの根拠をもって評価することをあらためて意識しました。とはいえ、実務で実際に取り組む際には、まだ自然に活用できていない部分もあるため、クラス終了後も学んだことを繰り返し復習する努力が必要だと感じました。 実務への活用はどう? 私の担当業務ではA/Bテストの利用が難しいと感じる一方で、今回のナノ単科を通じて知識こそが武器であると改めて実感しました。今後、活用の機会が訪れた際には、今回得た知識をしっかりと身につけ、実務に積極的に生かしていきたいと思います。

クリティカルシンキング入門

イシュー見極めで伝わる力

イシューの重要性は? イシューとは、各レイヤーにおいて存在する問題点のことであり、その中でもどのレイヤーのイシューが最も重要であるかを見極める必要があると実感しました。また、見る人やその立場によってイシューの捉え方が変わるため、正しく判断することが大切です。さらに、グラフ作成時には使用するグラフの種類によって情報の見え方が変わる点にも留意すべきだと感じました。 資料作成はどうする? 日常的に資料作成やグラフ作成、分析依頼がある中で、作業に取り掛かる前にどこが問題で重要な部分なのかを特定することが肝心です。その上で、どのように発表すれば相手により分かりやすく伝わるのかを考えて資料を作成すれば、業務をより効率的に進められると感じ、今後に活かしていきたいと思いました。

リーダーシップ・キャリアビジョン入門

理論で引き出す部下の可能性

理論は実務にどう響く? リーダー行動のタイプについて学習したおかげで、自分が業務を行う際に部下にどのように働きかけるかを、環境要因や適合要因から考察できるようになりました。さらに、これまで知らなかったパス理論やゴール理論について触れることで、具体的な行動の指針を得ることができ、大変有意義でした。 個性把握はどのように? まず、部下一人ひとりの特性を理解することが重要だと実感しました。また、職場の状況を踏まえて、効果的なアプローチ方法を検討する必要があります。現在は、部下との1on1の実施など、組織目標の定着と意識の共有化を進める方法を模索中です。特に、業務の動きが鈍い部下に対しては、どのような具体的アプローチが有効か、今後さらに検証していきたいと考えています。

クリティカルシンキング入門

変数×層別で挑む業務の新解釈

分解の軸は正確? 業務上、さまざまな課題に取り組む際、プロセス分解を用いることが多いと感じています。実際、課題を分解するときに「いつ」「誰が」「どのように」という軸を意識して切り分けていますが、多角的な視点から分解することにはまだ慣れていないと実感しています。 切り口の工夫はどう? そのため、今後は層別分解や変数分解といった切り口も取り入れ、事象ごとに工夫して分析できるよう努めたいと考えています。これらの手法を使うことで、業務上のプロセスに対する課題解決に一層取り組んでいく所存です。 結果の正確性はどう? また、資料作成や他者への説明の際にも、層別分解や変数分解を活用し、分解した結果や解析内容が正確かどうか再確認することを心掛けたいと思います。

データ・アナリティクス入門

データで魅せる学びの未来

平均と偏差をどう見る? データ解析では、代表値として平均値や分布の指標である標準偏差を用い、データの傾向や特性を把握します。また、平均値以外の代表値も存在するため、目的に合わせた適切な指標の選択が求められます。 グラフ選びはどうなってる? さらに、データを可視化する際は、対象となるデータに合わせた最適なグラフを選ぶことで、情報がより分かりやすく整理されます。この基本的な解析手法は、事業性評価にも応用され、普段の業務に自然と役立てることができています。 動画グラフは新しい? また、関連動画で紹介されていたグラフの中には、以前は使用したことがなかったものもありました。そのため、必要な際にすぐにグラフが作成できるよう、日頃から練習を重ねています。

「業務」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right