クリティカルシンキング入門

イシュー決定で問題を攻略

なぜイシューが重要? イシュー(問題の焦点)を決定するプロセスは非常に重要です。事象を細かく分解し、状況を正確に把握することで、数字やグラフといった表面的な情報だけに頼らず、着地点が大きく変わるのを防ぐことができます。「何について考えるのか」という問いは、明確かつ具体的である必要があり、今回の学習では、そのおかげでスムーズに効果的な解決策を導き出すことができました。決めたイシューから逸れないよう、常に意識することの大切さを実感しました。 対策はどう進める? 業務では複雑な問題に直面することが多く、以前は一度に解決しようとして非常に抽象的な問いを立てていたため、具体的な施策や対策に結びつかないことがありました。そのため、問題をひとつひとつ丁寧に分解し、原因や背景を詳しく把握する方法を取り入れることにしました。資料作成時には、イシューを明記しておくことで忘れずに意識し、会議の際はホワイトボードに記載してメンバー間で共有しながら議論を進めるなど、具体的な取り組みを実践しています。

リーダーシップ・キャリアビジョン入門

理論と実践で拓くやる気の秘密

基礎理論をどう捉える? 今回の学びとして、モチベーションとインセンティブの関係性について理解が深まりました。具体的には、マズローの欲求5段階説やX理論・Y理論、さらには動機付け・衛生理論といった基礎的な理論を踏まえ、相手のモチベーションを的確に理解することの重要性を再確認しました。 経験をどう活かす? また、コルブの経験学習モデル(具体的経験、内省的観察、抽象的観察、能動的実験)を意識することで、実体験からの学びを最大限に引き出す方法にも気づくことができました。今後は、周囲の人々のモチベーションの源泉を把握するために、コミュニケーションを重ねながら、効果的な働きかけを模索していきたいと考えています。 振り返りの意義は? さらに、業務の振り返りの機会を定期的に設けることで、単なる数値だけでなく、その背景や考え方についてもチーム内で共有するよう努めます。このプロセスを通じて、別の案件にも応用可能なノウハウや自身の持論を整理し、より実践的な成果に結び付けていければと思います。

デザイン思考入門

現場の声がカタチにする未来

どんな改善アイデアを出す? 総務として社内の視点に偏りがちな中、実際の業務に携わる姿を観察し、自分自身が可能な範囲で実践しながら、現場の声を取り入れて改善のアイデアをまとめたいと考えています。 現場の状況はどう見る? オフィスエリアの使い方については、上層部の意見に依存すると個人の主観や偏見に左右されがちです。そのため、オフィスフロアの各エリアで実際に業務を行い、現場の状況を確認しながら検討を進めたいと思います。一方で、Wモニターや空気清浄機など、必要な物の取捨選択については様々な意見が出る中で判断が難しい部分もあるため、慎重に選定を進める必要があります。 デザイン思考はどう捉える? また、デザイン思考に関しては正解がなく、最終的な答えをイメージするのが難しいと感じました。現場の意見をまとめても個人の感想にとどまる部分があり、本当に市場に求められているかどうかは実際に作ってみないとわからないため、会社として新しいものを作り続ける体力が必要だと実感しています。

リーダーシップ・キャリアビジョン入門

環境を味方にするリーダー術

リーダーシップを発揮するには? リーダーシップを最大限に発揮するためには、環境要因と適合要因をしっかりと見極め、それに合わせた適切な対応を取ることが重要であると理解しました。これまでの自分の行動を振り返ると、そこまで繊細に考えて行動することがあまりなかったと感じます。 事業部長としての挑戦 現在、私は事業部長として会社の方針を実際のビジネスに具体的に実現するための企画を担当しています。日々の業務では多くの判断が求められる場面が存在します。そのためには、部下や他部門に対しても環境要因と適合要因をしっかりと見極め、チームおよび会社の方向性を一致させながら、事業の成果を最大化したいと考えています。 判断の精度を上げるには? そのためにまず、すべての案件に対して環境要因と適合要因を分析し、その分析をもとに判断を行っていきます。また、判断の精度を向上させるために、いくつかの案件については部下や同僚に判断に至った分析を説明し、第三者的な意見を求めてPDCAサイクルを回していきます。

データ・アナリティクス入門

業務効率化のカギはデータ分析と説得力!

日々の意思決定は? 業務で日常的に行っている意思決定も、「分析」の結果であるということに気づいた。また、より早く、より良い意思決定を行うためには、「データ」の性質を理解し、効果的な比較を行い、他者が納得しやすいようにグラフ等を使用する必要があることを学んだ。 なぜ運用を変えるのか? 業務効率化を進めるため、新しい運用を推進することが日常的にある。その際、従来のやり方を変えたくないメンバーも多いが、以下のプロセスを踏むことで業務効率化をスムーズに進められるようになると思う。 まず、なぜ運用を変更した方がいいのかをしっかり分析する。そして、反対メンバーが理解し納得しやすいように、グラフ等も活用しながら分析結果を提示する。 学んだ内容をどう活かす? まずはWEEK6までの学習の中で、「分析手法」「データの性質」「それぞれのグラフの特徴」をしっかり自分の身につける。そして、WEEK6までで学んだ内容をすぐに実践に取り入れ、上司やメンバーを巻き込み、業務効率化を達成していく。

戦略思考入門

捨てる勇気で見つける新たな一手

何故捨てると考える? 業務の中で「捨てる」という行為について、戦略的な視点を持つことの重要性を再認識しています。これまで、慣習的に行っていたことを手放す際に、数値化や定量化といった方法で視覚化しながら、何のために捨てるのかという方向性を明確にすることを意識してきました。 感覚依存はどうして? 日頃から業務の多岐にわたる要素を整理する上で、「捨てる」という行為は欠かせないものの、その判断は感覚的なものに依存していたと感じています。そこで、より計画的・戦略的に考える意識づけが必要と考えています。 効用最大化って何? 効用の最大化と方向性の明確化という二つの視点から捨てることを捉えることが、業務改善にとって有効です。たとえば、作業の一部を生成AIが担えると判断すれば、その部分を手放すことで貴重な時間を確保することができます。 チーム意見交換は? さらに、方向性の明確化を通じた業務整理についても、チーム内で意見交換をし、より良い改善策を模索していきたいと考えています。

データ・アナリティクス入門

検証が導く次の一手

結果の背景は何? PDCAサイクルにおける「C(Check)」の重要性を改めて実感しました。業務では、A/Bテストの結果が出るとすぐに「採用」と「不採用」の判断に偏りがちですが、なぜその結果になったのかという背景や要因の検証が不足していると、本質的な成果や再現性のある改善につながりません。 結果だけで大丈夫? 自身の業務においても、施策実施後に結果だけを見て結論を出す傾向がありました。しかし、今後は仮説とのずれや背景要因を丁寧に分析し、再現性のある改善策を立てる必要性を感じています。 検証で進化できる? そこで、施策の実施後は必ず検証の時間を確保し、PDCAサイクルの「C(チェック)」を強化することを行動計画に盛り込みます。具体的には、仮説と結果の差異を可視化し、原因分析のためのデータを事前に収集・整理する仕組みを整え、定期的な振り返りの場で結果の背景を多角的に検証します。これにより、直感や思いつきに頼らず、根拠ある意思決定を進めていきたいと考えています。

データ・アナリティクス入門

現場で磨く仮説思考の実力

仮説思考の大切さは? ビジネスの現場において仮説思考の重要性を学びました。特に、結果の仮説と問題解決の仮説の両面について、過去・現在・未来という時間軸で考える視点が自分の理解を整理する大きな助けとなりました。 内部監査で疑問は? 私は内部監査の業務に携わっているため、問題解決の仮説を立てる際は、「問題は何か」「どこが問題か」「なぜ問題が起きているのか」「どうすればよいのか」という流れ(WHAT→WHERE→WHY→HOW)に沿って検討することが求められます。たとえば、ある事業計画がどのような前提に基づいて構築されているのか、将来の結果に対する仮説についても考える必要があると感じました。 仮説の整理方法は? さらに、自分が提示する仮説や被監査部門の結果としての仮説は、フレームワークを適宜活用し、抜け漏れなく論点を整理することが重要です。実際、問題の特定には成功しても、原因の深掘りが不十分な場合が多いことから、今後はその点にさらに注意して取り組んでいきたいと考えています。

クリティカルシンキング入門

伝わる資料づくりの挑戦

業務報告はどう改善? 現在の業務では、資料作成の依頼は少ないものの、日々の業務報告に際して簡単な資料を作成することで、情報がよりわかりやすく伝わると感じています。 色使いで伝え方は? また、今まで資料作成の際に色使いにあまり注意を払ってこなかったため、伝えたいポイントが不明瞭になっていたことを実感しています。そこで、強調すべき部分はフォントや色使い、構成に工夫を凝らす必要があると感じました。 見せ方ってどう変わる? まずは簡単な資料から作成を始め、実際に他の人に見せる機会を通して、グラフの適切な配置や強調すべきポイント、読み手がどのように感じるかを意識するように努めたいと思います。文章も読み手に伝わりやすい構成を心がけ、必要な情報が具体的に伝わるよう工夫していきます。 タイトルの印象は? さらに、これまではアイキャッチやメールの件名、タイトルにあまり工夫をしてこなかったため、今後はより印象に残る表現を取り入れ、資料全体の完成度を高めたいと考えています。

データ・アナリティクス入門

データが映す問題解決の一歩

データ分析前の課題は? データ分析を始める前に、まず何が問題なのかを明確にし、その問題がどこで発生しているのかを確認することが重要です。分析の基本は分解にあり、目的に応じて様々な視点で切り分ける際、階層の違いに注意する必要があります。たとえば、where、why、howの順序を意識することで、基本に立ち返ることができます。 検証方法はどうする? 実際の業務においては、前月の業績(予実差)を基に問題を設定し、どこから問題が生じているのかを調べます。その際、自分の感覚だけではなく、データ上で本当にそう言えるかをしっかりと検証することが求められます。結果を先入観として捉えず、データに基づいた事実を導き出す姿勢が大切です。 振り返りの進め方は? 毎月の業績振り返りでは、改めて何が問題なのかを定め、具体的な発生箇所を探るプロセスを実践します。このプロセスを通じて、自身の直感が正しいかどうかをデータを用いて検証し、結果ありきでデータを選び出さないことを意識することが求められます。

データ・アナリティクス入門

目的再確認で磨く鋭い分析

計画の反省点は? これまで計画的な勉強をせずに分析業務を進めてきましたが、これまでの経験を体系的に整理できたと感じています。 比較検討する意味は? 特に印象に残ったのは、目的と比較対象を再確認することで、分析の内容がより鋭くなった点です。どの手法や見せ方を選ぶかは、結論を導き出しほかの人に共有する上で重要であり、データに応じた適切な手法の選択が求められます。 共有の大切さは? 今後は、何を目指し何と比較するのかを具体的かつ明確にし、チーム内でしっかりと共有することを徹底していきたいと考えています。これにより、分析結果がより精度の高い仮説検証に繋がり、プロセス全体の質が向上すると思います。 挑戦の意義は? 具体的には、フォローアップや分析の都度、目的を直接再確認すること、目指すべきものと比較対象をはっきりさせた上で最初にチームと確認し合うプロセスを重視しています。また、習得した分析手法を活かし、普段あまり使用しなかった方法にも意識的に挑戦するよう心掛けています。

データ・アナリティクス入門

ABテストで成果を生むコツと課題

問題の原因をどう探る? 問題の原因を探るためには、まずプロセスを整理し、どの部分に課題があるのかを特定することが重要です。複数の仮説を立てて、それぞれの解決策を丁寧に検討する必要があります。ABテストは、少ない工数で低リスクに検証ができるため、おすすめの方法です。 ABテストの利点と課題は? 今回のテーマは自分の日常業務に近かったため、より理解が深まりました。ABテストについては、各媒体がAIで最適化するケースが増えており、実施が容易になっている一方で、「なぜこちらの方が成績が良いのか?」といった点が理解しにくくなり、次回に活かすのが難しいと感じます。 重要な視点をどのように意識する? 重要なのは、What、Where、Why、Howの視点を意識することです。ついついHowの検討に集中してしまいがちですが、プロセスを分解し、仮説を立てる手順を怠らないようにしたいです。また、仮説を立てるためには内部・外部の両面からの知識が必要ですので、情報収集の重要性も再認識しました。

「業務」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right