データ・アナリティクス入門

自ら選ぶデータ分析の真髄

データ分析から何が学べる? データ分析を通じて、体系的な課題解決方法を学びました。実際に扱うデータは自ら補完する必要があるため、比較意識を持って必要な情報を選定するスキルを高めたいと考えています。 応用力はどこから来る? また、業務全般に応用可能なフレームワークや思考パターンを習得できたと感じています。単一の業務でなく、思考が求められる多くの場面で今回の学びを実践し、常に意識を持って取り組んでいきたいと思います。 課題対策は具体的に? 違和感や課題に直面した際は、確認を含む仮説の立案やプロセスの細分化を意識して行いたいです。分析フェーズでは、比較を通じて実証を目的としたデータ抽出や多角的な視点からの提案を心掛け、より具体的な検証ができるようになりたいと考えています。

戦略思考入門

日常に輝く戦略的な一歩

戦略と自己分析のポイントは? 戦略的思考は、日常生活の中に当たり前に存在するものだと実感しました。これまで「とっつきにくい」と感じていた部分が解消され、明確なゴールを設定し、限られたリソースの中で最速かつ最短の方法で目的に向かうための行動計画が重要だと理解できました。その過程で、自分の強みや他人との違い、つまり独自性を常に意識することの大切さも学びました。 実践計画はどう組み立てる? 新規受注を獲得するためのアクションプランを策定する際は、まず自社の優位性や他社との差異を考慮した情報収集から始めました。得られた情報をもとに仮説を立て、実施すべき項目の取捨選択を行いました。これにより、不要な手戻りを最小限に抑え、効率よく迅速な成果に結びつけることを目指しました。

クリティカルシンキング入門

分解で見える未来の戦略

なぜ事象を分解する? MECEの考え方を取り入れ、事象を分解することの重要性を再認識しました。分解には、層別分解、変数分解、プロセス分解といったさまざまな手法が存在し、それぞれの方法で要素を整理することができることが分かりました。これまで体系的に分解要素をカテゴライズしていなかったため、大変驚きと新鮮さを感じました。 営業戦略はどう変わる? また、営業やチームの目標策定の立場に立つ中で、どの顧客にどのようなアプローチをすべきかを考える際にも、MECEを活用した分析の有用性を実感しています。特に、売上、利益率、商材、受注頻度といった観点から要素を分解することで、アプローチが不足している部分を具体的に把握し、より効果的な戦略を立てることができると考えています。

データ・アナリティクス入門

角度変えて見つける学びの真髄

多角的に見る大切さは? 物事は一方向からだけではなく、さまざまな角度から捉えることで本質に迫ることができます。一つのデータだけでなく、多くの情報を比較検討しながら分析を進める必要があり、見極める力を養うことが大切です。 データ活用のポイントは? 定量データを扱うことが多い中で、そのデータをどう活かすかを常に検討することが求められます。正確なデータの取り扱いをはじめ、集めた情報を蓄積し、前後の変化を比較することが、分析力向上の基礎となります。 数字のパワーを知る? また、分析により提案が有力な判断材料となるよう、数字の扱い方や活用方法にも工夫が必要です。数字が持つパワーは、その扱い方次第で大きく変わるため、具体的な活用策を考えることが重要です。

データ・アナリティクス入門

あなたも変われる学びの瞬間

データをどう活かす? 分析を行う際は、常に目的を意識しながらデータと向き合うことが基本です。データは単なる数字ではなく、素材と捉え、適切な調理方法や飾り付けで仕上げるように結果の表現手法を工夫する必要があります。各データの特性に合わせた分析プロセスを経ることで、他社にもわかりやすく咀嚼・理解される結果を得ることができます。 サポート状況はどう? また、作成されたサポートケース数の増減やカスタマーサーベイの結果を、製品、顧客、担当エンジニアなど複数の要素を組み合わせながら分析します。こうした取り組みによって、サポートチームが健全にオペレーションできているかを確認し、もし課題が見つかった場合には、その解決に向けた具体的なプランの策定も行います。

データ・アナリティクス入門

比較が生む新たな気づき

分析比較の重要性は? 今回の講義を通じて、分析の基本は「比較」にあると学びました。業務で調査データを扱う中で、過去のデータとの比較は無意識に行っていたものの、今回意識的に言語化することでその重要性を改めて実感しました。 データ整理ってどう? また、データの要素を整理する方法も学び、意味のある値とそうでない値を見分けることの大切さが身に染みました。これまではその違いを意識していなかったため、新たな視点を得る良い機会となりました。 比較で何が見える? 今後は、業務において製品の売上や調査結果、製造パラメータなどさまざまなデータを扱う際、必ず過去の事例や他社のデータと比較し、違いを明確に伝えることを心がけていきたいと思います。

クリティカルシンキング入門

工夫で見える成長の一歩

なぜ表現が変わる? 同じデータを用いても、表現方法によって情報の伝わり方が大きく変わることを学びました。グラフや表は単に数多くあれば良いわけではなく、その組み合わせによって印象が変わるため、より工夫が必要だと感じました。 資料改善はどうする? また、毎月の財務分析や売上分析の際には、上長への報告用に資料を作成しています。これまで引き継いだ資料をそのまま使っていましたが、もっと見やすく、伝わりやすい表現方法を工夫することで、将来的な業務効率の向上につなげたいと考えています。 エクセル技能は向上? なお、個人的なエクセルでのグラフ作成にまだ慣れていないため、今後さらに学び直し、スキルを向上させる必要があると実感しています。

戦略思考入門

3C分析で見える行政の未来

3C分析の目的は? 研修で3C分析が取り上げられることが多く、その目的が各事業の成功の鍵を見出すことにあるという点に改めて気付かされました。 行政の調査方法は? 行政の立場では、競合分析が他の自治体の動向を調査することを意味しますが、どの視点で後追いをするのか、あるいは独自性を持たせるのかといった点は、今後の課題として捉えています。 住民サービスの課題は? また、行政には多くの課題が存在し、特に住民サービスに過剰な時間が費やされる現状は大きな問題です。このため、効果的な対策を立てるには現状の徹底した分析が必要であり、原因分析に加えて住民の動向や自治体の強みをしっかりと把握する必要があると感じました。

データ・アナリティクス入門

仮説が切り拓く新たな視点

仮説設定はなぜ必要? データを加工する前に、まず仮説を立てることが非常に重要です。分析は目的があって成り立つため、単に数値や結果そのものにとらわれず、目的に照らした適切な加工方法を検討する必要があります。数値をそのまま受け取るのではなく、自分の観点を加え、他にどんな見方ができるのかという視点の多様性を意識します。また、確からしい仮説の立案のみならず、素早く検証するスピード感も大切です。 分析視点はどう選ぶ? 月次や週次の業務分析においては、どの角度からデータを切り分けるのが最も適切かを常に考慮します。分析後は、まとめた内容が本当に正しい観点に基づいているか、過去の踏襲に陥っていないかを再検討することが求められます。

戦略思考入門

差別化の鍵は強みの見極め

なぜ現状分析が必要? 講義を通じて、ただ単に顧客目線で考えるのではなく、差別化に向けては競合を意識し、実現可能性と持続可能性を検証することが重要であると改めて学びました。まずは、自社の現状を正確に把握するためにVRIO分析を実施し、その結果をもとにポーターの基本戦略を用いてターゲット顧客を絞り込む方法が効果的だと感じました。 どう優位性を確認? また、自社の優位性を明確にするためには、3C分析やSWOT分析と併せてVRIO分析を進めるのが有用であると思います。システム開発が本格化すると、柔軟に対応できる部分が限られてしまうため、提案活動の段階で自社の強みを十分に活かした提案を行うための準備が必要だと考えています。

データ・アナリティクス入門

既成概念を超えた発想のヒント

柔軟な発想って何? 既存の考えにとらわれず、引き出しを増やすことが仮説を立てる上で非常に重要だと感じました。 仮説の枠組みは? 3C分析や4Pの概念は耳にしたことがありましたが、実際に仮説を立てる際には意識できていなかったと気付きました。そのため、いきなり案を考えるのではなく、まずどのように考えるべきかを整理する必要性を実感しました。 どう顧客に寄り添う? また、離職者を減らすアプローチや、顧客の課題分析の際に、改めて3Cや4Pの考え方を取り入れる意欲が湧きました。さらに、顧客が自社の分析に必要なデータの種類や、適切な集計方法を提案する際にも、この視点を応用していきたいと思います。

データ・アナリティクス入門

繰り返し検証で磨く納得力

仮説検証の意義は? 仮説を立て、その仮説を実際に検証することが重要です。検証方法や使用するデータに誤りがないかを確かめることで、より具体的な仮説が作成でき、仮説の精度が向上していくことが分かりました。 検証繰り返しは大丈夫? これまでの分析では、仮説に基づく作業は行ってきたものの、同じ仮説を繰り返し検証する取り組みは十分でなかったように感じます。仮説に誤りがないかしっかりと確認することで、具体的かつ精度の高い仮説が作成でき、説明する相手に納得感を与える報告が可能になると考えます。そのため、今後の分析作業ではこの考え方を意識し、検証作業を繰り返すことが重要です。

「分析 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right