データ・アナリティクス入門

データに宿る成長ストーリー

全体の流れはどう? 全体の流れとしては、WHAT→WHERE→WHY→HOWの順で進める点が印象に残りました。ただ単にデータを集めるのではなく、ひとつひとつの分析がストーリーとして意味を持つように、傾向をしっかり掴むことが大切だと感じました。 問題は明確か? まずWHATの段階では、今解決したい問題を明確にし、目標となる結論やイメージをもっておくことが重要です。何のためにデータを扱うのか、最初に目的をはっきりさせることで、分析全体の方向性が定まります。 どの候補を選ぶ? 次にWHEREのステップでは、複数の候補を出し、解決に役立ちそうなポイントやデータが取得可能かを検討します。単独で見る方法や、ツリー・組み合わせといった整理手法を用いながら、どの観点に重点を置くかを決めていくとよいでしょう。 原因は探れた? さらにWHYのフェーズでは、考えられる原因をできるだけ多く、また網羅的に仮説として挙げることが求められます。どんな要素が問題に影響を及ぼしているのか、広い視点で捉えることが分析の精度を高める鍵となります。 数値は何を示す? また、データを見る際には実数と比率の両面から代表値などの数値に注目し、明らかにすべきポイントを意識する必要があると再認識しました。どのデータが問題解決に直結するのかを見極めるために、どんな情報をどう加工すべきかを事前に考えておくことが重要です。 目的は明確に? 特に、日々の業務では「言語化しなくても大丈夫」という考えに陥りがちですが、データを扱う際には必ず「何をしたいのか」という目的を明確にすることが不可欠だと感じました。また、データ収集時にも最終的なアウトプットのイメージを持つことで、やみくもな収集を避け、意図のあるストーリーを先に構築する姿勢が大切です。 フォーマットは有効? 今後は、以下のフォーマットを活用していきます。まず、解決したい問題を最初に記述し、次にストーリーや考え方、データの集め方・分析方法の全体像を示します。その上で、WHAT、WHERE、WHY、HOWの各パートを用意して進める手法を徹底していきたいと思います。 仮説は多角的? 最後に、仮説思考における「複数と網羅」という視点が非常に印象的でした。インパクト、ギャップ、トレンド、ばらつき、パターンなど、さまざまな角度から物事を見る姿勢は、今後の成長に大いに役立つと感じています。

データ・アナリティクス入門

比較が拓くデータの新常識

データ比較はどう進める? 分析の基本原則は「比較」であり、まずはデータを比較する目的に立ち返ることが大切だと感じました。データ収集の前に仮説を設定し、その仮説を検証していくプロセスの中で、データをどのように加工して示すかという点が今回の学びのポイントでした。加工の視点としては、大きく代表値と散らばりの2つに分けられ、代表値には単純平均、加重平均、幾何平均、中央値があること、そして散らばりについては標準偏差で表現されることを学びました。 外れ値の対応はどうする? 今までは単純平均しか扱ったことがなく、重みを考慮した平均やべき乗を利用した手法は初めて触れる内容でした。また、平均値だけでは捉えきれない外れ値に対しては中央値を用いることで対応する方法がある点も新鮮でした。標準偏差については、なぜルートがつくのかという計算過程が理解でき、正規分布の場合にデータの約95%が±2個分の範囲に収まるという納得感を得ることができました。これまで平均を取るだけで思考が止まってしまっていた部分を、散らばりの視点からデータ活用の具体的なイメージに結び付けることができました。 移住データで何が見える? また、人口減少対策において活用される移住者データを分析することへの関心が高まりました。各市町村の移住者データを様々な属性で分析し、特に年齢や家族構成の散らばりを調べることで、どの施策に注力すべきかを推測するひとつの手法となり得ると感じています。現状、移住促進施策はUターン促進とIターン促進の大別がなされており、例えばUターンでは地元を想う集まりの取り組みを強化し、Iターンではボランティアや副業などにより継続的な関わりを持つ関係人口への支援を強化するという方針です。こうした大まかな区分に加え、より具体的な属性の分析が進むことで、移住理由を数値的に捉え、具体的な施策検討に役立てることができそうです。 今後の分析計画は? 今後は、所管部署に対して詳細な個別データの入手が可能かどうか問い合わせる予定です。データが手に入れば、エクセルを用いた分析に取り組みたいと思っています。特に県全体と沿岸地域の違いを明らかにすることで、一緒に施策を進める市町村の担当者や移住コーディネーターの方々の取り組みにも影響を与えられるのではないかと感じています。5月20日(火)に、所管部署の担当者が意見交換に来訪する予定のため、その際にデータ入手の依頼を進めるつもりです。

クリティカルシンキング入門

思考の枠を広げる5週間の旅

クリティカルシンキングの重要性とは? クリティカルシンキングとは、物事を適切な方法で適切なレベルまで考えることを意味します。この原点に立ち返るために、受講当初の設問を振り返りました。当初、授業を受ける際には思考の制約や偏りを認識していませんでしたが、5週間の講座を終えてみると、自分の認識に大きな変化があったことを実感しています。 疑問が生まれる瞬間 新たなケーススタディを通じて、「本当に?」「なぜ?」「なんで?」という疑問が最初に浮かんだのは、今回の受講内容による学びの成果だと感じました。途中のグループワークでは、異なる考えを持つメンバーとディスカッションを行い、さまざまな視点や主張に触れることで大いに刺激を受けました。あるケーススタディでは、自分の発想が及ばなかった人材マネジメントやファイナンスに関する意見を聞き、新たな気づきを得ました。 業務効率化への影響は? 現在の業務では、ルーティン化した通常業務とフローが完了していない業務が混在しています。多様なミーティングや資料作成、プレゼンなどの機会がありますが、主として経理、総務、購買、広告販促などのバックオフィス業務が中心です。これらの業務全般において、クリティカルシンキングの思考方法は必要不可欠であり、業務の効率化や高品質化に繋がると感じています。 他者との協働はどう活かす? 加えて、同僚、上司、営業部門スタッフとの連携といった他者との協働が日常的に行われています。相手のバイアスも考慮し、認識の齟齬が生まれないように効率的に業務を遂行するために、クリティカルシンキングの学びを活かしています。 実践例から学ぶポイントは? 以下の点を常に意識しています: - 目的を常に意識する - 自他の思考の癖を意識する - 本当にそれでいいのかと常に問い続ける 具体的な実践例として、以下のような取り組みをしています: - ミーティングのファシリテーターを務める前に、各議題に対して提案者とともにイシューを特定し、その認識を共有する。 - 自身の部署に対する意見・要望をヒアリングし、その結果をクリティカルシンキングを用いて分析し、自らの主張と根拠を導き出して文章やスライドを作成し、課内に共有する。 - 自身の受け持っている業務を虚構にしないようにし、他者に引き継ぎやすくするために、現状のフローが適切かどうかイシューを特定し、最適な業務内容を作成して手順書を作成する。

データ・アナリティクス入門

グラフと平均値で掴む分析術のコツ

グラフは何を示す? グラフの活用法とその分析時の手法について考えます。まず、円グラフは各要素の割合を確認したい場合に使用します。一方、ヒストグラムは全体のばらつきを視覚的に把握したい時に便利です。グラフを活用する際は、事前に仮説を立て、その仮説に基づいて予測データと実際のデータを比較し、深堀することが重要です。 平均値はどう使う? 分析手法としては、様々な平均値があります。単純平均はただ平均値を求める方法です。加重平均は重みを考慮して算出され、例えば東証株価指数がこの方法を用いています。幾何平均は成長率や平均何倍になるかを知りたい時に使用されます。外れ値の影響を避けたい場合は中央値を用いるとよいでしょう。また、標準偏差を利用することで、データのばらつきを把握できます。標準偏差が小さいほどデータは均一であることを示します。これに基づき、2SDルールでは95%のデータが大よその範囲内に収まるとし、5%のデータは外れ値とされます。 リスクはどう把握? 施設のポテンシャルや価格の分布を分析する際には、ヒストグラムや散布図を使うことで、戦略に対するリスクを特定できます。例えば、ポテンシャルの高い施設で高コストの外れ値がある場合、戦略的値下げの必要性を検討する余地があります。また、小さい施設で安価なコストの外れ値はベンチマークとして他施設に引き合いに出されるリスクとなる可能性があります。 医療データの精度は? 医療機器のデータ精度を分析する際、標準偏差を利用して精度の精確性を確認することができます。業界の標準として、変動係数CVが2%以下であれば精度の担保がされているとされています。変動係数は標準偏差を平均値で割ることで算出されますので、まず標準偏差を求める必要があります。特に機器の精度が外れ値を持たず、許容範囲内に収まることが求められるため、標準偏差の知識は重要です。 適正価格はどう算出? 価格交渉の際、統一グループやGPO施設カテゴリ内の平均価格やベンチマークの引き合いがあります。この際、どの「平均」が使用されているかを確認し、データを鵜呑みにせず、グラフや散布図、加重平均や中央値を用いて適正価格を示すことが重要です。 仮説はどこから? 最後に、分析に取り掛かる前に仮説を立てることが大切です。仮説に正解はありませんが、経験に基づいた想像力を活かし、いくつも仮説を洗い出すことが有益です。

データ・アナリティクス入門

思考のクセを正し、問題解決力を高める方法

問題解決のステップをどう活用する? 問題解決の4つのステップ、すなわちWhat(問題の明確化)、Where(問題箇所の特定)、Why(原因の分析)、How(解決策の立案)を学びました。私の思考のクセとして、Whatを決め打ちしてしまうことや、Howの展開に意識が向きすぎることがあります。そのため、Whatに関しては目の前の課題が全体構造のどこに位置づけられているのかを確認するよう意識しています。Howについては、Whatの構造を理解し、Where→Whyを経てしっかりと導き出すことで、数ではなく説得性と精度を高めていきたいと考えています。 A/Bテストを成功させるには? A/Bテストについては、比較検証を目的とするため、以下のポイントを理解しました。 - 複数の要素を同時に変えると検証が難しくなるため、このようなことは避ける。 - 同列で比較する必要があるため、期間・ターゲットなど条件をできるだけ揃える。 - 低コストで実施できるため、トライ&エラーを重ねて精度を上げていく。 購入者定着の課題をどう解決する? 「商品Aの購入者定着」という課題に対しては、一旦立ち止まって状況を整理しました。例えば、購入者定着を要素分解(要素集約)すると、上位階層に売上向上という課題があります。本質的な課題としては、「売上向上があり、分解すると新規と定着に分けられ、データで補足すると新規の向上が売上の変数として大きく影響する」という課題に変わる可能性があると捉え、4つのステップを視野を広げるためと、要素を絞り込んで確度を上げるために活用していきます。 広告効果の測定には何が必要? ABテストは広告の売上効果を測る際に用いたいと考えています。しかし、売上に関わる変数(広告外のプロモーションや価格など)が多いため、「広告だけの効果」を測るのが難しいです。この点についてアドバイスが欲しいです。 課題特定を円滑にするには? 現在取り組んでいる各部署の伴走案件において、上記の4ステップを課題特定に活用しています。会社上層部からの指示や慣習などから使用するデータや活用方針がある程度決まっているため、他の選択肢を持てない方もいます。そういった場合、一度立ち止まって課題の要素分解を行うよう促しています。月内に7つの案件があるため、事前に各部署の業務理解を深め、広い視野で課題を捉えることを意識して伴走します。

リーダーシップ・キャリアビジョン入門

エンパワメント実践で自律を育む方法

エンパワメントって何? エンパワメントについて、日常業務である程度理解していたつもりでしたが、特に重要だと思われる目標設定の観点を整理できたことが非常に有意義でした。エンパワメントを行う際は、相手が目標や仕事を理解しているか(MUST)、努力すればできるか(CAN)、そしてやる気になるか(WILL)がポイントだと考えています。 リーダーの役割は? エンパワメントとは、目標達成のために組織構成員が自律的に行動できる力を与えるためのリーダーシップ技術の一つです。リーダーは組織構成員に権限を委譲しますが、最終責任はリーダー自身が持つという立場を取ります。そのため、リーダーは目標を明確にし、適切な仕事を割り当て、計画の策定や実行プロセスを支援します。 目標はどう決める? 目標設定において重要なのは、組織構成員をやる気にさせることです。メンバーが分からない場合は説明し、できない場合は不安や困りごとを引き出して共に解決し、やりたくない場合にはやりたくなるような意義付けが必要です。良い目標とは、使命感に基づく意義があり、行動が具体的にイメージでき、測定基準と度合いが明確なものです。 どの仕事が適切? エンパワメントに向く仕事と向かない仕事があります。向く仕事は、メンバーが目標を理解し、能力より少し高い難易度のもの、つまり育成の観点があるものです。逆に向かない仕事は、権限の限界があるもの、ミスが許されないもの、緊急の対応が求められるもの、一度きりのものなどです。 任せ方はどうする? 仕事を任せる際には、期限と成果の期待値を伝えるだけでなく、目標設定を行います。メンバーがその仕事をやりたくなるような意義を伝え、育成を視野に入れた難易度設定を行い、阻害要因を取り除くなどの対応が必要です。 結果をどう振り返る? さらに、これまで行ってきたエンパワメントの結果も整理したいと考えています。現在、上半期の業績計画における予算と実績の差異について、メンバーにその原因追求と改善策の策定を依頼しています。来週にはレビューが上がってくる予定ですが、その際、真因分析や改善策が不十分であれば、これまでのように指示するのではなく、メンバーの説明から不足点を質問で引き出し、阻害要因を取り除くことで、彼らが自発的に真因分析の深化や改善策のブラッシュアップができるよう、目標設定とプロセス管理の面で支援していきたいです。

クリティカルシンキング入門

理論を実践に転換する新たな視点

理論と実践の進め方は? これまでの学習を総括すると、理論的な理解から実践へのステップをどのように進めるかを考える重要な期間でした。Week0-6を通じて、思考のステップや方法について、理論的には知識を深めましたが、実際の実践に移すためには、今後の自分自身の行動を見直す必要があると感じています。 学び活用のポイントは? 以下は、これまでの学びを最大限に活用するためのポイントです。 どんな姿勢が必要? まず、3つの姿勢です。「目的を常に意識する」「自他の思考のクセを前提に考える」「問いを持ち続ける」の3つの姿勢を常に持ち続けることが重要です。これにより、思考力が向上し、継続的なトレーニングが肝になります。 相手をどう理解? 次に、相手の視点に立ち、他者を理解することが欠かせません。相手目線での「考える」「書く」「話す」「見せる」といったスキルを磨くことで、相手の思考のクセを理解するようにし、それが伝達の工夫につながり、業務を効果的に進めるために役立つと学びました。 長期策は何が必要? 今後の長期的な活用として、改善策の検討が挙げられます。日常の業務では、人事領域で改善策を考える場面が多くあります。そこで、学んだ思考のプロセスを用いて、具体的な形にすることが重要です。相手目線で伝えることで、他部署からの早期承認を得ることもできます。 来期プランはどう? 直近の業務における活用ポイントとしては、来期プランの策定があります。採用や研修などに関する来期プランの検討には、現状の分析をもとにイシューを特定し、具体的な策を考えていくことが求められます。注意点としては、手段ありきで進めないことです。 質向上の秘訣は? さらに、日々のメールや資料作成、会議のファシリテーションにおいても、質を高めることで業務遂行能力を向上させることを目指しています。 プラン策定の進め方は? 現在進行中の来期プラン策定の過程では、講座で得た学びを実践する良い機会です。この過程を通して、自身の学習の不足点も見えてくると思います。そのため、実践を重ねるとともに、さらなる学びを進めていきたいと思います。 今期施策の具体策は? 具体的には、今期のデータを分析し、各会議の目的を明確化して参加型の会議を実現することや、新たな施策をデータから抽出すること、相手目線を考慮した資料作成を行う予定です。

データ・アナリティクス入門

データ分析で成果を引き出す方法

CTRとCVRはどう分析? プロセスを段階的に考えることは、データ分析において非常に重要です。例えば、CTR(クリック率)やCVR(購入率)を比較することで、プロモーションの効果を測定します。この段階で、CTRが高い場合はターゲットユーザーに適した場所でプロモーションが行われているか、または掲載しているクリエイティブがユーザーに合致していることが考えられます。同様に、CVRが高い場合は購入を促すことができていたり、サイトのUI/UXが優れている、商品そのものが魅力的であるという理由が考えられます。これらの指標を基に課題を抽出し、改善策を講じることが必要です。 仮説はどう作る? 原因を仮説立てる際には、思考の範囲を広げることが求められます。具体的には、フレームワークを利用したり、反対概念を活用することが有効です。最適な解を見つけるためには、初めに適切な判断基準を考え、それに基づいて評価を進めます。判断基準に重要度の違いがある場合は、重み付けを行い、比較検討を通じて最適な解を選びます。 費用対効果はどう判断? プロモーションの費用配分を検討する際には、有料広告のCTRやCVR、各コストを再度検証し、費用対効果の観点から最終的には投資対効果への移行を考えます。また、メールマーケティングにおいては、ターゲットに適したバナーを見つけるために、ビジュアル、テキスト、クリエイティブの観点からABテストを実施します。 意思決定は合理的? 中長期的には、会社全体で「勘と経験に頼る意思決定」を「データ分析を用いた合理的な意思決定」へ移行することを目指します。このためには、誰でも気軽に分析ができる環境を整え、学びとモチベーションを高め、業務効率化により時間を確保することが重要です。 効果検証はどう実施? 投資対効果を考える上で、判断基準の検討、検証方法の確立、経営層への効果的なアプローチが求められます。メールマーケティングにおけるバナーのABテストの実施例として、秋の行楽シーズンを訴求する際に、ビジュアル面では人物の有無やテーマ、テキスト面では金額や特典、クリエイティブ面では静止画や動画を考慮に入れることが挙げられます。 人材育成はどう進む? また、データ分析における人材を育成するために、社内の教育プログラムを活用し、DX変革を推進するための環境作りも必要です。

クリティカルシンキング入門

目的を明確に!効率的な問題解決法とは?

学びを日常にどう活かす? これまで学んできた内容を全体的に復習しました。その中で、改めて「目的を明確にすること」と「問いを立てること」の重要性を再認識しました。人間の思考は主観に偏りがちで、そのために本質からそれた部分に焦点を当ててしまうことがあるという前提を持ちました。自分の思考が偏らないようにするためには、まず物事の全体像を把握し、イシュー(課題)を特定することが大切です。そのためには具体と抽象を繰り返し、様々な角度から物事を見る必要があります。この過程でイシューを特定し問題の本質を明確に捉えることが、効率的な情報処理に繋がると改めて感じました。 情報処理の効率化とは? この学びは日常の様々な場面で活用できると思います。たとえば、報告・連絡・相談(報連相)、プレゼンテーション、社内外の会議、問題定義や課題解決時などです。自分の主観で物事を進めていないか、イシューを特定できているかを常に確認していきたいと思います。また、人との業務上の会話の中でも相手がイシューを特定できていない場合に、自分からイシューを明確にすることで会話がスムーズに進むので、この点を意識していきたいです。 効果的な問題解決法は? 何事も着手する前に立ち止まり、「目的を明確にすること」「全体像を把握しイシューを特定すること」「伝える内容と目的を明確にすること」を実践していきます。具体的には次のような場面・行動を考えています。 1. **データ分析の際に仮説を立てる** - 行動: データを単純に見るのではなく、まず全体像を把握し、問いを立ててから分析を行います。問いに基づき、どのデータが重要かを判断し、結果を検証するプロセスを経て分析の精度を高めます。 - 理由: 問いを立て、分解し、結果を検証することで、より深い洞察を得ることができます。 2. **プロジェクトやタスクの問題解決における代替案の評価** - 行動: 問題が発生した際、単一の解決策に飛びつくのではなく、複数の代替案を出し、それぞれのメリットとデメリットを比較検討します。そして最も効果的な方法を選択します。 - 理由: クリティカルシンキングを活用することで、短期的な解決策ではなく、長期的に効果的な解決策を見つけることができます。 これらの行動を日常の仕事に取り入れることで、より効果的で効率的な業務遂行を目指していきます。

クリティカルシンキング入門

切り口で広げる学びの可能性

なぜ着目が大切? ライブ授業で「着目ポイントが大事」と先生がおっしゃっていた言葉が強く印象に残りました。人、時間、物、曜日など、さまざまな切り口で情報を集め、柔軟な分析視点を持つことの重要性を実感しています。 切る基準はどこ? また、「どこで切るかという基準点を持つことで分解の仕方が見える」というお言葉も非常に印象的でした。データアナリティクスの講座で学んだ内容と重なり、より一層理解を深めることができました。今回学んだクリティカル・シンキングとデータ分析の掛け合わせを通して、相手に納得してもらい行動を促すための論理的なプロセスを構築し、プロジェクトを進めていこうと考えています。自社の現状や改善点を明確にし、効果的な広報・採用戦略の構築へと繋げることが狙いです。 戦略はどう整理? 現在、広報業務の中でも特に採用に直結する業務が多いため、自社の強みを活かす事業戦略の検討が重要だと感じています。その第一歩としてSWOT分析を活用し、Strength(強み)、Weakness(弱み)、Opportunity(機会)、Threat(脅威)の4つの視点から、ピラミッドストラクチャーを用いて会社全体の現状を把握しようと考えています。内部環境と外部環境に分け、「着目ポイント」を常に意識することで、多角的に情報を整理する狙いです。 データはどう見る? さらに、データ・アナリティクス講座で学んだ『比較対象を同じに』という考え方を活かし、主張と根拠の整合性を意識してデータを抽出したいと思います。感覚に頼らず、客観的なデータを根拠に説明や提案を行うことで、戦略に説得力を持たせ、実効性のある広報・採用施策の立案につなげることができると考えています。 方法は本当に良い? また、広報業務の一環として、大手求人サイトへの再掲載や新卒採用向けの展示会出展、自社採用サイトでの情報発信など、複数の施策を同時進行で進めています。その中で、「今取り組んでいる方法で本当に良いのか」と一度立ち止まり、作業や考え方を見直すことの大切さも感じています。そこで、ピラミッドストラクチャーとSWOT分析を組み合わせることで、より論理的かつ実践的なアプローチが可能になるのではないかと試行中です。この考え方が正しいかどうかはまだ不確かですが、スタッフとも共有し、実際の施策に落とし込んで検証していきたいと考えています。

データ・アナリティクス入門

数字から見える問題の本質と解決策への道程

分析の本質とは何か? Week1のポイントを復習しました。分析の本質は比較であり、比較する際に注意すべき点は、比較対象を揃えることです。問題解決のプロセスには、What、Where、Why、Howの4つがあります。 問題解決の4ステップとは? まずWhatでは、何が問題なのかを定めます。次にWhereで、問題がどこにあるのかを特定し、あるべき姿と現状のギャップを数字を用いて比較します。この段階ではフレームワークが有効です。Whyでは、なぜ問題が発生しているのかを探ります。そしてHowでは、どのように対処するかを考えますが、すぐにHowに飛びつかないことが重要です。 データ分析の注意点は? さらに、単純な平均値に惑わされず、データのばらつきに留意することが必要です。代表値として平均値、中央値、最頻値をチェックし、ヒストグラムを用いてデータにばらつきがないかを確認します。 仮説の検証方法は? 仮説を立て、その仮説が成り立つかを検証するためにデータを集めます。問題の原因を明らかにするためには、プロセスに分解する方法が有効です。解決策を見つける際には、複数の選択肢を洗い出し、それぞれの根拠をもとに絞り込みます。 チームでのデータ分析をどう進める? こうした復習を行った上で、実践問題に取り組んだところ、数値を見ることや問題の箇所を特定することがかなりスムーズになったと感じました。しかし、複数の回答を絞り出そうとすると視野が狭くなることがありました。データ分析を行う上では、一人で考えるだけでなく、チームメンバーの多角的な視点が必要であると感じました。そのためには、チームメンバーにもデータ分析の考え方を共有し、共通のプロセスを踏むことが必要だと感じました。 お客さまアンケートの分析は? 現在、上半期の施策などの振り返りを行っています。その中で、お客さまアンケートの分析業務が現在のメインの仕事となっています。この分析を通じて、お客さまからの評価のボトルネックとなっている部分を発見し、対策を講じる必要があります。 問題発見と仮説の共有方法は? まずは、問題がどこにあるのかを明らかにするために、関連するデータをビジネスプロセスごとに並べてチーム全員で意見交換を行います。問題の所在が見えてきたら、その原因について仮説を立て、チームメンバーでその仮説を共通認識にします。

クリティカルシンキング入門

分解で拓く学びのヒント

分解方法はどう選ぶ? 分解して考える方法について学ぶ中で、層別分解(部分ごとや性年代別など)、変数分解(売上=単価×数量など)、プロセスによる分解というさまざまな切り口があることを再認識しました。実際に経験を重ねる中、分解することで新しい事実が見えてくると感じる一方、切り口や分け方によって事実の見え方が変わるため、十分な確認が必要であると実感しました。特に、常に「MECE」の概念を意識して切り口を選び、数字の漏れや重複がないかを確認することが大切だと思います。 ロジックは何が新鮮? ロジックツリーに関する学習では、MECEの切り口を組み合わせることで、全体像から個別の要素に至るまで論理的に整理できる点が非常に新鮮でした。動画での解説を通して、この考え方は便利だと感じた一方、実際に自分で応用しながら考えると難しさもありました。しかし、学習を進めるうちに、重要なポイントや具体例を通じて、影響を与えうる要素に対して仮説を立て、インパクトの大きい要因を組み合わせて考察する方法を習得できました。 実績分析のコツは? 得意先となる食品スーパーなどの実績分析においては、全体実績から店舗別やカテゴリー別に分解し、どの要因が結果に影響を及ぼしているのかを的確に抽出するためにロジックツリーの活用が効果的だと感じました。 仕入分析は何重視? また、仕入先商品の分析においては、商品の供給が最終的に販売店や消費者に届き、どのように売れているのかを詳細に検証する際にも、分解する考え方が役立つと考えます。表面的な数字だけでなく、どのような顧客層にどの時間帯や曜日に支持されているのかを把握することで、提案方法や販売店へのアプローチがより具体的になると感じました。 自社提案の秘訣は? 自社提案および実績の分析では、取り扱う商品が複数に及ぶため、単品での販売ではなく「商品群」としての提案が求められることから、売上という表面的な数字だけでなく、分解方法を駆使して細かい部分まで検証・提案に活かしていく必要があると認識しました。 数字確認はどうする? 日常的に数字の確認を行うため、基本の考え方を忘れないようにする目的で、手帳と勉強ノートに「分解方法」「MECE」「ロジックツリー」の内容や重要なポイントをメモしています。これにより、目に触れる機会を増やし、反射的に活用できるように心がけています。

「分析 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right