データ・アナリティクス入門

複数仮説が照らす未来への一歩

仮説の意義は何? 仮説とは、ある論点に対する一時的な答えであり、課題解決のプロセスではまず「what(課題の特定)」を行い、その後「where(どこに問題があるか)」を考えることになります。 問題点はどこ? どこに問題があるかを検討する際、ポイントは以下の2点です。まず、必ず複数の仮説を立て、いずれかに固執しないようにします。次に、各仮説に網羅性を持たせることが重要です。今回の学びでは、例えば「レッスン内容」「レッスン代金」「立地や日時」「販促方法」といったサービスの各要素をあらゆる角度から洗い出すイメージでした。また、3Cや4Pといったフレームワークに触れることで新たな視点を得ることができました。 仮説の種類は? さらに、仮説には主に2種類があると学びました。ひとつは、ターゲット層の拡大などの結論に関する仮説、もうひとつは問題の原因や解決策を具体的に検討する問題解決の仮説です。後者は「where:問題の箇所を仮定する」「why:その原因を推測する」「how:解決方法を検討する」という順序で考え、筋道を立てる手法でした。 アンケート結果は? 社内で実施する教育後のアンケートでは、解答直後にアプリが提示する円グラフから、何が問題か(what)の部分を大まかに把握することができます。その後、回答者の属性や状況を踏まえ、できるだけ網羅的に「where」を洗い出すために仮説を検討します。4Pの観点では、教育内容、コスト(ここでは時間や労力)、実施方法や時間配分、連絡手段などを考慮した仮説となります。 事前整理の効果は? このように事前に分析の視点を整理しておくことで、設問作成もスムーズに進められ、必要なデータを最初から集めやすくなると感じました。 結論仮説の重要性は? また、業務で用いている仮説の中では、特に結論に関する仮説が重要であると改めて実感しました。直近で実施する意識調査の分析にあたっては、複数の結論の仮説を立て、その理由を深く考えた上で、使用するデータ項目を決定し、最終的に対策案を立案する流れを実践する予定です。最終提出前には、自分の仮説が他の仮説と矛盾しないかも確認し、他者の視点を意識することで、更なる精度向上を目指したいと思います。 実践活用はどう? また、6月に実施する教育後アンケートでは、これまでの気づきを反映し、より実践的な思考ツールとして活用できるよう努めていきたいと考えています。

デザイン思考入門

実践をカタチに!先輩の学び

仲間とどんな刺激? グループワークやLIVE授業では、仲間のプロトタイプを拝見し、紙で模型を作成したり、AIを活用して画像やプレゼン資料を作成する様子に大変刺激を受けました。体調不良でプロトタイプの準備が十分にできなかったことには申し訳なさも感じましたが、実際に目で確認することで、ユーザーがどのように使うか具体的にイメージでき、そこから自然に議論やフィードバックが生まれて次のプロトタイプへとつながっていくと実感しました。 店舗改善はどう進む? 店舗オペレーション改善業務においては、お客様や従業員といった各ユーザーを中心に「店舗のあるべき姿」を考える際、デザイン思考を取り入れていきたいと考えています。特に、以下のポイントを意識して実践しようと思います。 共感で何を掴む? まず、①共感~課題定義の段階では、インタビュー時にコーディングを活用し定性分析の精度を高めるとともに、全体向けに抽象的な解決策を求めるのではなく、ペルソナを設定して特定のニーズに絞ることで、明確で具体的な課題を定義します。また、カスタマージャーニーマップを用いてユーザーの思考や感情を可視化するため、自ら体験することが有効であると考えています。 発想で見える未来? 次に、②発想(イデーション)では、質より量を意識し、多くの新しいアイデアを生み出すために楽しい雰囲気でブレインストーミングを実施します。ダブルダイアモンドの考え方を念頭に、多くのアイデアを発散させるとともに、SCAMPER法を活用して他にない視点を積極的に取り入れるよう心がけます。 形はどう作る? そして、③プロトタイプ~テストの段階では、モノだけでなくサービスやオペレーションの動きなど、形のないものでも「まずは形にする」ことを重視します。プロトタイプはスピード感を持って繰り返し作成し、最初から完璧を求めずに改善を重ねることが大切だと感じています。 成果共有はどうする? 自身の業務では、インタビューや観察、ブレインストーミングの機会が多いため、今回学んだ視点や方法を早速取り入れ、メンバーへ共有していきたいと考えています。また、プロトタイプ作成において「まずは形にする」「スピーディーに」「繰り返し行う」という姿勢を、これまで以上に意識するためのスケジューリングから始めていくつもりです。楽しい環境で多くの発散を促すことが、新しいアイディアを生む鍵であり、その重要性をメンバーにも伝えていきたいと思います。

クリティカルシンキング入門

データ解析で見つけた学びの旅

情報をどう分解する? 情報を解析するためには、その情報を分解する方法を学びました。まず、解析する全体の情報を定義します。このとき、いつからいつまでの情報を扱うのかを確認することが重要です。その上で、単に機械的に分けるのではなく、なぜそのように分ける必要があるのかを考え、複数の視点から情報を分解します。一つの視点での分解では、漏れや重複がないかを確認します。また、時間や場所を考慮したプロセスの分解を行い、比率や分布、変化率などを表計算で工夫することで、情報の正確な分解が可能になります。最初は大まかに分解し、解像度を上げるように進めます。 医療データ分析のポイントは? 医療業界のデータ分析について、二つの要点を実施します。まず、新規紹介患者数の分析です。2018年から2024年を対象にし、この期間には特に2020年から2023年のコロナ禍の影響を考慮する必要があります。データを患者の年齢、性別、疾患別、および病院の診療科や紹介元医療機関の規模(病院、地域クリニック)、さらには緊急性で分解し、変化率を算出します。これにより、患者属性や病院要因が新規紹介患者数に与える影響を明らかにし、コロナ禍による変動を正確に分析します。 外来患者満足度はどう評価? 次に、外来患者満足度調査の分析を行います。毎年実施されるこの調査の結果をもとに、単年度での解析のみならず、経年変化を評価して改善の有無を把握します。回答者を年齢、性別、通院歴(初診、再診)で層別化し、通院プロセスを受付、診察、待ち時間、会計などに分解して感想を解析します。過去3年のデータを用いて変化率を算出し、患者満足度の変化を定量的に把握します。これにより、外来プロセスにおける成果や改善点の特定と評価を行います。 ① 新規紹介患者数の分析では、2018年から2024年のデータを収集します。収集の際には、層別分析ができるように、患者データをリストアップし、疾患分類や医療機関の規模の基準を明確にします。整理されたデータは、解析しやすいように専用シートにまとめ、欠損データの程度を確認して、その分解が有意義であるかどうかを評価します。 ② 外来患者満足度調査の分析では、過去3年のデータを収集し、年齢や性別、通院歴、通院プロセスに基づいて解析できるようデータを整理します。また、来年度以降のアンケート項目や質問順序の見直しを行い、「何を解析するべきか」「なぜ解析するのか」を明確にした上で設計を行います。

データ・アナリティクス入門

ゼロからプラスへ実践で拓く未来

どうして実践は難しい? ありたい姿と現状のギャップを何度も意識しているものの、実際に実践するのは非常に難しいと感じました。その中で、マイナスをゼロにする問題解決とゼロをプラスにする問題解決の違いに注目し、後者ではありたい姿をステークホルダーと共有することが重要という点がとても印象に残りました。デジタル技術が進む現代においては、問題発見力が一層求められる中で、TOBEを構想する力だけでなく、その構想について関係者と認識を合わせる共感力の重要性を再確認する機会となりました。 どの分析で理解する? また、what、where、when、whyのフレームを問題分析に取り入れるというシンプルなアイデアは、これまであまり意識してこなかったため、新鮮な学びとなりました。自分で活用する際も、他の人に説明する際も非常に分かりやすく、実用性が高いと感じています。 ロジック知識はどう? ロジックツリーやMECEのフレームについても、改めて説明を受けることで新たな気づきがありました。特に、層別分析と変数分析のジャンル分けは、普段無意識に行っていた部分が大きかったため、今後は意識的に思考のスイッチングに活用していきたいと考えています。 基本はなぜ大事? さらに、GAiLのセッションを通じて、経営における基本を徹底すること、すなわち凡事徹底の重要性を実感しました。WEEK0で学んだ事例に倣い、慣れや直感に頼らず、都度基本に立ち返って自分の手法を客観的に見つめ直すことが必要だと感じました。 切り口をどう捉える? また、さまざまなフレームワークや切り口が存在することから、情報を学べば学ぶほど実践時にどれを採用すべきか迷うこともあります。しかし、生成AIをパートナーにすれば、自分が直面する課題に対して最適なツールや切り口を模索する際の有力なサポートになると新たな活用方法を見出しました。 改善策は何か? 具体的な今後の改善点としては、まず凡事徹底のために自分が立ち返る教科書として本棚を見直すことから始めます。次に、ロジックツリーの活用については、自分が使用しているアウトライナーの新たな用途として、思考整理に取り入れ、層別と変数の切り替え(国語的分解と算数的分解)を意識して活用していきたいです。さらに、分析を始める前に一度立ち止まり、生成AIとともに最適なツールと切り口を検討することで、より効果的な問題解決のアプローチにつなげられると考えています。

リーダーシップ・キャリアビジョン入門

キャリアの未来を拓く4つの理論

講座の狙いは何? 今週の講座では、「代表的なキャリア理論を知る」ことに焦点が当てられました。以下にその内容をまとめます。 キャリアの価値基準は? まず、キャリア・アンカーについてです。これは、エドガー・H・シャイン博士が提唱した理論で、自己分析や他者からのフィードバックを通じて、自分の仕事における価値観を明確にする方法です。キャリア・アンカーには8つの種類があります:特定専門分野、全般管理コンピタンス、自律・独立、保障・安定、起業家的創造性、純粋な挑戦、奉仕および社会貢献、生活様式です。これらを確認する手順として、自己診断やインタビューを行い、それらを考慮してキャリア開発を決定することが推奨されます。この理論は、現在のキャリアや人生の判断基準として役立つ一方で、制約にもなる可能性があります。 生存戦略はどう挑む? 次に、キャリアサバイバルについてです。これは、職務と役割の戦略的プランニングに関する分析手法で、環境変化や複雑な人間関係に対応するために重要です。組織が自分に求めるものを把握し、変化を予測して対応するための計画を立てることが求められます。 今後のリーダー像は? 続いて、これからのマネジャーとしてのあり方です。急速な変化に対応するために、自己変革を継続することが大切とされています。必要なスキルには個人としてのスキル、仕事に必要なスキル、テクニカルスキル(論理思考力、分析力)、ヒューマンスキル(コミュニケーション、巻き込む力)、コンセプチュアルスキル(目標設定、ビジョン設定)などがあります。 指導法はどう使う? 最後に、リーダーシップのスタイルについてです。リーダーシップは、状況や個人の特性に応じて活用の仕方を変えることが重要とされています。具体的には、指示型(具体的な指示を出す)、コーチ型(問いを立て、意見を引き出す)、支援型(働きやすい環境を整える)、委任型(権限を委譲する)のスタイルがあります。 支援策はどう考える? これらの理論を踏まえた上で、チームメンバーのキャリア開発を支援するための具体的な行動として、自己診断や個別インタビューの実施、キャリア開発計画の策定、定期的なフィードバックセッション、環境変化の情報共有、リーダーシップスタイルの適用が挙げられています。これにより、メンバーのキャリア開発を支援し、チーム全体のパフォーマンスを向上させることが目指されています。

データ・アナリティクス入門

データに宿る成長ストーリー

全体の流れはどう? 全体の流れとしては、WHAT→WHERE→WHY→HOWの順で進める点が印象に残りました。ただ単にデータを集めるのではなく、ひとつひとつの分析がストーリーとして意味を持つように、傾向をしっかり掴むことが大切だと感じました。 問題は明確か? まずWHATの段階では、今解決したい問題を明確にし、目標となる結論やイメージをもっておくことが重要です。何のためにデータを扱うのか、最初に目的をはっきりさせることで、分析全体の方向性が定まります。 どの候補を選ぶ? 次にWHEREのステップでは、複数の候補を出し、解決に役立ちそうなポイントやデータが取得可能かを検討します。単独で見る方法や、ツリー・組み合わせといった整理手法を用いながら、どの観点に重点を置くかを決めていくとよいでしょう。 原因は探れた? さらにWHYのフェーズでは、考えられる原因をできるだけ多く、また網羅的に仮説として挙げることが求められます。どんな要素が問題に影響を及ぼしているのか、広い視点で捉えることが分析の精度を高める鍵となります。 数値は何を示す? また、データを見る際には実数と比率の両面から代表値などの数値に注目し、明らかにすべきポイントを意識する必要があると再認識しました。どのデータが問題解決に直結するのかを見極めるために、どんな情報をどう加工すべきかを事前に考えておくことが重要です。 目的は明確に? 特に、日々の業務では「言語化しなくても大丈夫」という考えに陥りがちですが、データを扱う際には必ず「何をしたいのか」という目的を明確にすることが不可欠だと感じました。また、データ収集時にも最終的なアウトプットのイメージを持つことで、やみくもな収集を避け、意図のあるストーリーを先に構築する姿勢が大切です。 フォーマットは有効? 今後は、以下のフォーマットを活用していきます。まず、解決したい問題を最初に記述し、次にストーリーや考え方、データの集め方・分析方法の全体像を示します。その上で、WHAT、WHERE、WHY、HOWの各パートを用意して進める手法を徹底していきたいと思います。 仮説は多角的? 最後に、仮説思考における「複数と網羅」という視点が非常に印象的でした。インパクト、ギャップ、トレンド、ばらつき、パターンなど、さまざまな角度から物事を見る姿勢は、今後の成長に大いに役立つと感じています。

データ・アナリティクス入門

比較が拓くデータの新常識

データ比較はどう進める? 分析の基本原則は「比較」であり、まずはデータを比較する目的に立ち返ることが大切だと感じました。データ収集の前に仮説を設定し、その仮説を検証していくプロセスの中で、データをどのように加工して示すかという点が今回の学びのポイントでした。加工の視点としては、大きく代表値と散らばりの2つに分けられ、代表値には単純平均、加重平均、幾何平均、中央値があること、そして散らばりについては標準偏差で表現されることを学びました。 外れ値の対応はどうする? 今までは単純平均しか扱ったことがなく、重みを考慮した平均やべき乗を利用した手法は初めて触れる内容でした。また、平均値だけでは捉えきれない外れ値に対しては中央値を用いることで対応する方法がある点も新鮮でした。標準偏差については、なぜルートがつくのかという計算過程が理解でき、正規分布の場合にデータの約95%が±2個分の範囲に収まるという納得感を得ることができました。これまで平均を取るだけで思考が止まってしまっていた部分を、散らばりの視点からデータ活用の具体的なイメージに結び付けることができました。 移住データで何が見える? また、人口減少対策において活用される移住者データを分析することへの関心が高まりました。各市町村の移住者データを様々な属性で分析し、特に年齢や家族構成の散らばりを調べることで、どの施策に注力すべきかを推測するひとつの手法となり得ると感じています。現状、移住促進施策はUターン促進とIターン促進の大別がなされており、例えばUターンでは地元を想う集まりの取り組みを強化し、Iターンではボランティアや副業などにより継続的な関わりを持つ関係人口への支援を強化するという方針です。こうした大まかな区分に加え、より具体的な属性の分析が進むことで、移住理由を数値的に捉え、具体的な施策検討に役立てることができそうです。 今後の分析計画は? 今後は、所管部署に対して詳細な個別データの入手が可能かどうか問い合わせる予定です。データが手に入れば、エクセルを用いた分析に取り組みたいと思っています。特に県全体と沿岸地域の違いを明らかにすることで、一緒に施策を進める市町村の担当者や移住コーディネーターの方々の取り組みにも影響を与えられるのではないかと感じています。5月20日(火)に、所管部署の担当者が意見交換に来訪する予定のため、その際にデータ入手の依頼を進めるつもりです。

クリティカルシンキング入門

思考の枠を広げる5週間の旅

クリティカルシンキングの重要性とは? クリティカルシンキングとは、物事を適切な方法で適切なレベルまで考えることを意味します。この原点に立ち返るために、受講当初の設問を振り返りました。当初、授業を受ける際には思考の制約や偏りを認識していませんでしたが、5週間の講座を終えてみると、自分の認識に大きな変化があったことを実感しています。 疑問が生まれる瞬間 新たなケーススタディを通じて、「本当に?」「なぜ?」「なんで?」という疑問が最初に浮かんだのは、今回の受講内容による学びの成果だと感じました。途中のグループワークでは、異なる考えを持つメンバーとディスカッションを行い、さまざまな視点や主張に触れることで大いに刺激を受けました。あるケーススタディでは、自分の発想が及ばなかった人材マネジメントやファイナンスに関する意見を聞き、新たな気づきを得ました。 業務効率化への影響は? 現在の業務では、ルーティン化した通常業務とフローが完了していない業務が混在しています。多様なミーティングや資料作成、プレゼンなどの機会がありますが、主として経理、総務、購買、広告販促などのバックオフィス業務が中心です。これらの業務全般において、クリティカルシンキングの思考方法は必要不可欠であり、業務の効率化や高品質化に繋がると感じています。 他者との協働はどう活かす? 加えて、同僚、上司、営業部門スタッフとの連携といった他者との協働が日常的に行われています。相手のバイアスも考慮し、認識の齟齬が生まれないように効率的に業務を遂行するために、クリティカルシンキングの学びを活かしています。 実践例から学ぶポイントは? 以下の点を常に意識しています: - 目的を常に意識する - 自他の思考の癖を意識する - 本当にそれでいいのかと常に問い続ける 具体的な実践例として、以下のような取り組みをしています: - ミーティングのファシリテーターを務める前に、各議題に対して提案者とともにイシューを特定し、その認識を共有する。 - 自身の部署に対する意見・要望をヒアリングし、その結果をクリティカルシンキングを用いて分析し、自らの主張と根拠を導き出して文章やスライドを作成し、課内に共有する。 - 自身の受け持っている業務を虚構にしないようにし、他者に引き継ぎやすくするために、現状のフローが適切かどうかイシューを特定し、最適な業務内容を作成して手順書を作成する。

データ・アナリティクス入門

グラフと平均値で掴む分析術のコツ

グラフは何を示す? グラフの活用法とその分析時の手法について考えます。まず、円グラフは各要素の割合を確認したい場合に使用します。一方、ヒストグラムは全体のばらつきを視覚的に把握したい時に便利です。グラフを活用する際は、事前に仮説を立て、その仮説に基づいて予測データと実際のデータを比較し、深堀することが重要です。 平均値はどう使う? 分析手法としては、様々な平均値があります。単純平均はただ平均値を求める方法です。加重平均は重みを考慮して算出され、例えば東証株価指数がこの方法を用いています。幾何平均は成長率や平均何倍になるかを知りたい時に使用されます。外れ値の影響を避けたい場合は中央値を用いるとよいでしょう。また、標準偏差を利用することで、データのばらつきを把握できます。標準偏差が小さいほどデータは均一であることを示します。これに基づき、2SDルールでは95%のデータが大よその範囲内に収まるとし、5%のデータは外れ値とされます。 リスクはどう把握? 施設のポテンシャルや価格の分布を分析する際には、ヒストグラムや散布図を使うことで、戦略に対するリスクを特定できます。例えば、ポテンシャルの高い施設で高コストの外れ値がある場合、戦略的値下げの必要性を検討する余地があります。また、小さい施設で安価なコストの外れ値はベンチマークとして他施設に引き合いに出されるリスクとなる可能性があります。 医療データの精度は? 医療機器のデータ精度を分析する際、標準偏差を利用して精度の精確性を確認することができます。業界の標準として、変動係数CVが2%以下であれば精度の担保がされているとされています。変動係数は標準偏差を平均値で割ることで算出されますので、まず標準偏差を求める必要があります。特に機器の精度が外れ値を持たず、許容範囲内に収まることが求められるため、標準偏差の知識は重要です。 適正価格はどう算出? 価格交渉の際、統一グループやGPO施設カテゴリ内の平均価格やベンチマークの引き合いがあります。この際、どの「平均」が使用されているかを確認し、データを鵜呑みにせず、グラフや散布図、加重平均や中央値を用いて適正価格を示すことが重要です。 仮説はどこから? 最後に、分析に取り掛かる前に仮説を立てることが大切です。仮説に正解はありませんが、経験に基づいた想像力を活かし、いくつも仮説を洗い出すことが有益です。

データ・アナリティクス入門

思考のクセを正し、問題解決力を高める方法

問題解決のステップをどう活用する? 問題解決の4つのステップ、すなわちWhat(問題の明確化)、Where(問題箇所の特定)、Why(原因の分析)、How(解決策の立案)を学びました。私の思考のクセとして、Whatを決め打ちしてしまうことや、Howの展開に意識が向きすぎることがあります。そのため、Whatに関しては目の前の課題が全体構造のどこに位置づけられているのかを確認するよう意識しています。Howについては、Whatの構造を理解し、Where→Whyを経てしっかりと導き出すことで、数ではなく説得性と精度を高めていきたいと考えています。 A/Bテストを成功させるには? A/Bテストについては、比較検証を目的とするため、以下のポイントを理解しました。 - 複数の要素を同時に変えると検証が難しくなるため、このようなことは避ける。 - 同列で比較する必要があるため、期間・ターゲットなど条件をできるだけ揃える。 - 低コストで実施できるため、トライ&エラーを重ねて精度を上げていく。 購入者定着の課題をどう解決する? 「商品Aの購入者定着」という課題に対しては、一旦立ち止まって状況を整理しました。例えば、購入者定着を要素分解(要素集約)すると、上位階層に売上向上という課題があります。本質的な課題としては、「売上向上があり、分解すると新規と定着に分けられ、データで補足すると新規の向上が売上の変数として大きく影響する」という課題に変わる可能性があると捉え、4つのステップを視野を広げるためと、要素を絞り込んで確度を上げるために活用していきます。 広告効果の測定には何が必要? ABテストは広告の売上効果を測る際に用いたいと考えています。しかし、売上に関わる変数(広告外のプロモーションや価格など)が多いため、「広告だけの効果」を測るのが難しいです。この点についてアドバイスが欲しいです。 課題特定を円滑にするには? 現在取り組んでいる各部署の伴走案件において、上記の4ステップを課題特定に活用しています。会社上層部からの指示や慣習などから使用するデータや活用方針がある程度決まっているため、他の選択肢を持てない方もいます。そういった場合、一度立ち止まって課題の要素分解を行うよう促しています。月内に7つの案件があるため、事前に各部署の業務理解を深め、広い視野で課題を捉えることを意識して伴走します。

リーダーシップ・キャリアビジョン入門

エンパワメント実践で自律を育む方法

エンパワメントって何? エンパワメントについて、日常業務である程度理解していたつもりでしたが、特に重要だと思われる目標設定の観点を整理できたことが非常に有意義でした。エンパワメントを行う際は、相手が目標や仕事を理解しているか(MUST)、努力すればできるか(CAN)、そしてやる気になるか(WILL)がポイントだと考えています。 リーダーの役割は? エンパワメントとは、目標達成のために組織構成員が自律的に行動できる力を与えるためのリーダーシップ技術の一つです。リーダーは組織構成員に権限を委譲しますが、最終責任はリーダー自身が持つという立場を取ります。そのため、リーダーは目標を明確にし、適切な仕事を割り当て、計画の策定や実行プロセスを支援します。 目標はどう決める? 目標設定において重要なのは、組織構成員をやる気にさせることです。メンバーが分からない場合は説明し、できない場合は不安や困りごとを引き出して共に解決し、やりたくない場合にはやりたくなるような意義付けが必要です。良い目標とは、使命感に基づく意義があり、行動が具体的にイメージでき、測定基準と度合いが明確なものです。 どの仕事が適切? エンパワメントに向く仕事と向かない仕事があります。向く仕事は、メンバーが目標を理解し、能力より少し高い難易度のもの、つまり育成の観点があるものです。逆に向かない仕事は、権限の限界があるもの、ミスが許されないもの、緊急の対応が求められるもの、一度きりのものなどです。 任せ方はどうする? 仕事を任せる際には、期限と成果の期待値を伝えるだけでなく、目標設定を行います。メンバーがその仕事をやりたくなるような意義を伝え、育成を視野に入れた難易度設定を行い、阻害要因を取り除くなどの対応が必要です。 結果をどう振り返る? さらに、これまで行ってきたエンパワメントの結果も整理したいと考えています。現在、上半期の業績計画における予算と実績の差異について、メンバーにその原因追求と改善策の策定を依頼しています。来週にはレビューが上がってくる予定ですが、その際、真因分析や改善策が不十分であれば、これまでのように指示するのではなく、メンバーの説明から不足点を質問で引き出し、阻害要因を取り除くことで、彼らが自発的に真因分析の深化や改善策のブラッシュアップができるよう、目標設定とプロセス管理の面で支援していきたいです。

クリティカルシンキング入門

理論を実践に転換する新たな視点

理論と実践の進め方は? これまでの学習を総括すると、理論的な理解から実践へのステップをどのように進めるかを考える重要な期間でした。Week0-6を通じて、思考のステップや方法について、理論的には知識を深めましたが、実際の実践に移すためには、今後の自分自身の行動を見直す必要があると感じています。 学び活用のポイントは? 以下は、これまでの学びを最大限に活用するためのポイントです。 どんな姿勢が必要? まず、3つの姿勢です。「目的を常に意識する」「自他の思考のクセを前提に考える」「問いを持ち続ける」の3つの姿勢を常に持ち続けることが重要です。これにより、思考力が向上し、継続的なトレーニングが肝になります。 相手をどう理解? 次に、相手の視点に立ち、他者を理解することが欠かせません。相手目線での「考える」「書く」「話す」「見せる」といったスキルを磨くことで、相手の思考のクセを理解するようにし、それが伝達の工夫につながり、業務を効果的に進めるために役立つと学びました。 長期策は何が必要? 今後の長期的な活用として、改善策の検討が挙げられます。日常の業務では、人事領域で改善策を考える場面が多くあります。そこで、学んだ思考のプロセスを用いて、具体的な形にすることが重要です。相手目線で伝えることで、他部署からの早期承認を得ることもできます。 来期プランはどう? 直近の業務における活用ポイントとしては、来期プランの策定があります。採用や研修などに関する来期プランの検討には、現状の分析をもとにイシューを特定し、具体的な策を考えていくことが求められます。注意点としては、手段ありきで進めないことです。 質向上の秘訣は? さらに、日々のメールや資料作成、会議のファシリテーションにおいても、質を高めることで業務遂行能力を向上させることを目指しています。 プラン策定の進め方は? 現在進行中の来期プラン策定の過程では、講座で得た学びを実践する良い機会です。この過程を通して、自身の学習の不足点も見えてくると思います。そのため、実践を重ねるとともに、さらなる学びを進めていきたいと思います。 今期施策の具体策は? 具体的には、今期のデータを分析し、各会議の目的を明確化して参加型の会議を実現することや、新たな施策をデータから抽出すること、相手目線を考慮した資料作成を行う予定です。

「分析 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right