戦略思考入門

フレームワークで視野を広げる学びの旅

差別化の学びは何? 差別化を考える際に特に印象に残った学びを紹介します。 フレームワークは何で? まず、フレームワークを用いることの重要性を挙げます。マクロからミクロまでの広い視野で細かく分析するには、フレームワークが欠かせません。フレームワークを使用することで、見落としを防ぎ、思考のバイアスを取り除き、新たな気づきを得ることができます。 顧客視点はどう? 次に、顧客視点で考えることの重要性です。競合が行っていないことに目を向けがちですが、顧客が喜ぶような差別化をしなければ成功しません。顧客のニーズを何度も考え抜く粘り強さが必要です。 模倣防止は可能? さらに、他社に模倣されない施策を講じることが求められます。すぐに模倣されてしまう施策は、あっという間にコモディティ化してしまい意味がありません。自社独自かつ模倣が困難で、長期的な継続が可能な施策を打ち出すことが重要です。 過去とどう向き合う? バックオフィスにおいては、競合との差別化ではなく、自分たちの過去との差別化を考える必要があります。業務効率や業務品質、過去のクレームなどを分析して課題や実績を洗い出します。顧客から直接ニーズを得たり、現状のリソースから実現可能な施策を考えたりします。そして、その実現に向け、皆で話し合いながら意思決定を行い、実施内容を検討します。集合知の活用が鍵となります。 実践はどう進める? 具体的な実践例としては、業務上フレームワークを使う機会が少ない場合でも、適切な場面では必ずフレームワークを活用し、自己の視座を広げる努力をします。また、同じ部署の仲間を競合と捉え、自分にしかできないことで自身を差別化することも一つの方法です。

クリティカルシンキング入門

データ分析で視野を広げる学びへの旅

データ分析の手法とは? データを見る際には、単に与えられた数字を眺めるだけでなく、自らデータに触れて比率などの必要な情報を引き出し、グラフ化することで、複数の視点から分析することが重要です。こうしたアプローチにより、データを多角的に捉えることができます。 MECEで現状を把握するには? データを分解する際は、MECE(Mutually Exclusive and Collectively Exhaustive)を意識することが大切です。同じ内容を繰り返すことなく、全体を漏れなくカバーすることで、現状を正確に把握できます。 具体的な分析の例は? システムや業務の分析では、具体的な例として航空券の購入フローや空港での搭乗フロー、整備フローなどを分解して考えることが挙げられます。また、売り上げ分析では、路線別や年齢別、搭乗回数別に分解してみることも効果的です。 業務に応用できるか? これらの手法は日常業務でも活用可能です。例えば、システム障害発生時の対応やアクセス数のデータ分析、WEBサイトへの攻撃分析といった場面でも役立ちます。 テンプレート活用の効果は? さらに、切り口のテンプレートを作成すると便利です。例としては、航空券購入から搭乗後までのプロセスを旅客の視点や業務の視点で分類することが考えられます。また、研修アンケートの分析にもこの方法を応用できます。受講前には思いもよらなかった角度からデータを切り分け、Tableauといったツールの活用も視野に入れると良いでしょう。 新たな視点が発見を生む? 日常業務においては、失敗を恐れずにデータを分解し、新たな視点で見ることがスタート地点です。こうした姿勢が新たな発見につながります。

データ・アナリティクス入門

問題解決力を磨く成長の一歩 業務改善で未来を切り拓く

どう成長体験を感じた? ライブ授業を受講することで、初回の自分と比べ、問題解決のステップをどのように構築すべきかを未熟ながらもイメージできるようになり、成長を実感しました。講座全体を振り返る中で、自分が何を学んだのかを再認識し、理想の姿を描いたうえで現状とのギャップを把握しました。このプロセスにより、問題解決のステップを具体的に理解し、自己成長にも応用できるという確信を得ることができました。 業務目的は明確か? 原価登録業務の効率化と適正な登録タイミングの実現に向けて、改善すべき点を明確にしようと考えています。まずは、業務の目的をはっきりと認識することが重要です。自分が担当している業務だけでなく、関係全体の目的や役割を確認し、現状の状態を数値などで正確に捉えるよう努めます。その上で、目的に沿った理想の業務フローを描き、現状とのギャップを明確にすることが不可欠です。 どんな対応が必要? これを実現するために、業務フローを細かく分解し、各工程を前のステップと比較しながら問題箇所を特定します。そして、どのような対応が必要か仮説を立て、検証を進める計画です。業務の目的を達成できるフローを構築するため、必要なデータの取得方法や精度についても、関係者と十分に議論しながら取り組むことが大切だと感じています。 データ分析は適切か? また、データを収集する際には、盲目的に数値を追い求めるのではなく、あらかじめ立てた仮説に基づいて精査する必要があります。複数のフレームワークを活用しながら仮説を検証することで、思い込みによる誤った方向性に陥らないよう注意しています。こうしたプロセス全体が、業務上の問題を解決し、登録業務の効率化に大きく寄与すると考えています。

アカウンティング入門

PL×BSが紡ぐ経営の真実

BSとPLの連動をどう捉える? BSとPLがどのように連動しているのか、改めて理解することができました。具体的には、PLの当期純利益がBS上の純資産(内部留保や利益剰余金)に反映され、株主から見ると「その会社に預けたお金が1年間で増えたのか減ったのか」という結果となる点が新鮮でした。 BS各部のバランスは? また、BSの見方については、まず流動資産、固定資産、流動負債、固定負債、純資産という5つのパーツを比較し、全体のバランスを把握することが基本であると学びました。左側では資金をどのように有効活用しているか(何に使い、何が増えているか)を、右側では倒産リスク(借入額の多さ、支払い能力、負債が純資産に対してどうなのか)を確認するという考え方が非常に論理的でした。具体的には、流動資産と流動負債の大小関係や、流動資産と固定資産のバランス、さらには純資産に占める固定資産の割合がそれぞれの企業の安全性を示す指標となるという点が特に印象に残りました。 減価償却の仕組みは? さらに、減価償却についても、購入時にはPLに反映せずBSに資産として計上し、その後は毎年「減価償却費」としてPLに計上される仕組みになっていることが理解でき、実務でも確実に役立ちそうだと感じました。 決算書活用のヒントは? 最後に、実際の経営相談の現場では、公開されている企業の決算書を自主練習の材料として活用することで、PLとBSから読み取れる情報や提案の幅を広げる手段として有効に働くと実感しました。BSの各パーツを比較して、ある条件ならこういった指標になる、といった具体的な分析方法をさらに学びたいという思いが強まり、分かりやすい解説書などがあればぜひ参考にしたいと感じています。

データ・アナリティクス入門

ABテストで効果を最大化する方法とは?

問題解決ステップの理解をどう深める? 問題解決の4つのステップについて学んだ中で、特にWhy(原因分析)とHow(解決方法の立案)、そしてその手法としてABテストについて理解が深まった。ABテストはシンプルで運用や判断がしやすく、低コスト・低工数・低リスクで実行可能なため、非常に活用しやすい。実施の際には、目的設定、改善ポイントの仮説設計(何でも変えるのではなく、意図を持って比較しやすくする)、実行(十分なデータ量を確保)、結果検証の流れが効果的である。ただし、Web広告の場合には時間帯や曜日、プラットフォームなど他の条件が異ならないように注意が必要だ。 ABテストで問題解決の精度を高めるには? さらに、ABテストは「データ分析を通じて問題解決の精度を高める(Check)」と「仮説を試しながらデータを収集し、よりよい問題解決につなげる(Act)」を迅速に行うことができるため、非常に効率的だ。 例えば、メルマガでイベント告知を行う際にABテストを活用すれば、それぞれ訴求する内容を変えて、どの訴求ポイントが効果的かを検証することができる。しかし、解決案をひとつに絞るのは良くないので、SNS投稿など別のアプローチも併用して検証する必要があるだろう。 問題解決の全体像を把握するには? これまで、ランディングページ(LP)作成や広告を打つ際、一度行ったABテストの結果に満足して長期間使用していたことを反省。常に仮説を持ち、様々な角度から検証して改善していくことが必要だと感じた。また、問題解決の4つのステップ(What→Where→Why→How)の順番を意識し、単に解決策を考えるだけでなく、その全体像を把握することにリソースを費やすことを心がけたい。

データ・アナリティクス入門

問題解決のステップで成果を出す方法

問題解決プロセスの重要性は? 問題解決のプロセスについて学んだ内容を振り返ります。 まず、問題解決のプロセスには、以下の4つのステップがあります:What(何が問題か)、Where(どこに問題があるか)、Why(なぜ問題が起きているのか)、How(どうするのか)。この順序を守りつつ、ステップを踏んでアプローチすることが大切です。ただし、このステップは必ずしも順番通りに進むわけではなく、行ったり来たりすることがあります。 問題を定める方法とは? 最初にすべきことは、問題を定めることです。あるべき姿と現状とのギャップを把握し、数字を使って売上と予測を比較することで具体的にギャップを捉えます。そのギャップの間で現場で何が起きたのかを確認することも重要です。 フレームワークの活用法を知る 次に、問題がどこにあるのかを整理する際には、ロジックツリーやMECE(Mutually Exclusive, Collectively Exhaustive)などのフレームワークを使うと、漏れなく検討するのに有効です。 問題解決の優先順位をどうつける? 現在、サービスに対するアンケート分析を行っていますが、対象が広範囲であるために論点がバラバラになり、打ち手も行き当たりばったりになっていました。今回学んだ方法を使い、まず問題を複数洗い出し、その中で本当に解くべき問題に優先順位をつけ、チーム内で合意を得ることが必要です。そして、解くべき問題について、学んだ各ステップを踏んで考えます。 MECEとロジックツリーの実践 考える際には、MECEとロジックツリーを使ってみましょう。まず手を動かして使ってみることで、理解を進めることができるでしょう。

クリティカルシンキング入門

試行錯誤から生まれた分析の智恵

データ加工の秘訣は? データの加工においては、分布の見え方が刻み幅によって大きく変わることを実感しました。一部の刻みやすい部分だけに頼らず、あらかじめ仮説を立てた上で様々な試行錯誤を行いながら加工することが重要だと感じています。また、加工結果を伝える際には、グラフなど視覚的な資料を用いて相手の注意を引く工夫が必要だと学びました。さらに、MECEの手法として、層別、変数、プロセス分解という大きく3つの方法があることも新たな発見でした。 プラン策定の視点は? ビジネスプランの策定にあたっては、まず対象期間を明確に定義し、その期間内に成長する領域をあらゆる角度からMECEの観点で分解することが効果的だと考えます。仮説を基に分析を進めると、具体的なポイントが見えてくるでしょう。特に、層別の分解では、単に分かりやすい切り口を選ぶのではなく、意図を持った切り口にすることで、伝えたい内容をより明確に伝えることができ、相手に納得してもらいやすくなります。また、会社から得られる数字だけに頼らず、必要な要素を漏らさず情報を収集する姿勢も重要だと感じました。 レポート作成の狙いは? 日々のレポート作成や本質を押さえたアクションを行う際には、まず要素を思い描き、書き出すこと。そして、分解し、他の切り口がないかを常に考え直すことで、ポイントを簡潔かつ分かりやすく伝えることができると実感しました。 工夫の実践例は? 加工や切り口の工夫は、経験や場数、センスが求められるものです。実際の業務でどのように活かされているのか、または自分自身や家族における意思決定の場面で役立っている事例についても知ることができれば、さらなる学びにつながると感じています。

戦略思考入門

差別化の鍵はターゲット明確化!

良い差別化施策の基盤は? 今週の学習を通じて、良い差別化の施策には、まずターゲットとなる顧客を明確にすることが重要だと学びました。その上で、顧客にとってどのような価値があるか、競合他社と比較した際の優位性、そしてその実現可能性や持続可能性が検討されたものであることが求められます。私はこれまで、おおざっぱな打ち手を考えがちでしたが、ターゲット顧客の明確化から始めることで、戦略に一貫性を持たせることの重要性を理解しました。また、自社の強みをしっかりと整理するためにフレームワークを活用する必要性にも気づかされました。 自社の強みを見つける方法は? ターゲット顧客を明確にすることが差別化の基盤であることを理解し、自社の強みをフレームワークで整理するという実践が価値を高めるためのブレイクスルーとなるでしょう。 カスタマーサポートでの差別化は可能? 昨年末から現在まで、自社のサービスや事業において、どう新たな価値を提供していくべきかを考えてきました。特にカスタマーサポートやカスタマーサクセスにおいて、その領域でどう差別化された強みを活かせるのかが大きな課題です。この点に関しても、今回学んだ視点や手順に沿って、特にVRIO分析を用いて強みを整理し、ターゲット顧客を明確にすることで、より広い視野で戦略を考えたいと思います。 新サービスのアイデア生成手順 まずは、自社のサービスや事業における強みをVRIO分析で書き出します。その後、ターゲット顧客を明確にし、新しいサービスや価値のアイデアを生み出します。そして、それに基づいてカスタマーサポートやカスタマーサクセスがどう動いていくかを検討し、新しいアイデアを反映させて方針をまとめ上げたいと考えています。

マーケティング入門

ターゲット再分析で広がる提案の可能性

ターゲティングの再認識をするには? ターゲティングの重要性について再認識しました。現在の業務では、ターゲットが漠然と決まっていることが多く、そのため提案を作成する際にもそのまま進めていましたが、ターゲットを明確にし、他の切り口からも考えていくことで、提案の幅を広げることができると感じました。 フレームワークはどう活用する? また、ポジショニングマップの活用についても理解が深まりました。提案書作成時にフレームワークの重要性を再確認し、特にポジショニングマップを使うことで伝えたい内容をわかりやすく、より効果的に伝える提案ができると学びました。現在作成中の提案書にこの方法を取り入れて実践しています。 新規業務での提案の工夫は? 新規業務の提案書作成においても、早速ポジショニングマップを作成し、提案の重要なポイントを絞り込んでいます。以前は提案内容が多岐にわたってしまうことが多かったのですが、ターゲットの再分析とポジショニングマップを用いることで、セールスポイントを明確に絞ることができるようになりました。 新市場開拓で見えてきたこと 新しい市場開拓に向けた自社サービスの提案を進めている中で、当初想定していたターゲットとは異なる切り口でも再分析することで、新たに提案できる内容が見えてくるのではないかと考えました。早速チームで共有し、意見を求めることにしました。 チームと成果を共有する方法 現在の提案書作成活動では、ポジショニングマップを取り入れ、チームメンバーにも共有することで、セールスポイントの洗い出しや、重要なポイントの確認に役立てています。ターゲティングについてもメンバーと意見交換し、次回のミーティングまでの課題としています。

クリティカルシンキング入門

データ分析で得た新しい視点を育む旅

多角的な分析って? 数字やデータの分析においては、多様な視点での切り口が重要です。どのように分けるべきか迷うこともあるかもしれませんが、迷うよりもまずは様々な方法で分けて可視化してみることが大切です。特徴が見えない場合もありますが、それはその分け方が適していないと学ぶ機会です。特に、MECE(漏れなくダブりなく)を意識して切り分けることで、より正確な分析が可能になります。まず全体像を把握し、MECEを意識した分解を行うことが効果的です。 次回の展開はどう? 現在はコンテンツ開発の時期ではないため、データ分析の機会は少ないですが、次回のコンテンツ開発時には過去のアンケート結果を様々な角度からMECEを意識して可視化することで、新しいコンテンツ開発に役立てたいと思います。また、別の企画での社内研修を考えており、参加者のアンケート結果を活用して次年度の研修内容をどのように改善するかを考える際にこの方法を活用したいと考えています。さらに、アンケート作成時に何を質問すべきか考える際にも役立つと感じています。 可視化の工夫は? 具体的には、以下の方法を試みようと思います。まず、様々なデータを見つけられる限りの切り口で分けて可視化すること。そして、データをエクセルに取り込み、パーセンテージ表示やグラフ化を行い可視化して確認する習慣を身につけることです。さらに、常にMECEを意識し、モレやダブリがないか確認しながら進めることが必要です。 振り返りの学びは? 過去に分析したアンケートデータをもう一度見直し、得た知識をもとに新たな視点で見てみることも重要です。こうした取り組みを通じて、データの見え方の違いを体感し、今後の分析に活かしていくつもりです。

データ・アナリティクス入門

理想と現実のギャップを埋める術

現状と理想は何だろう? 手元にあるデータを見つめると、まず「どうしようかな、何をすればいいかな」と迷いが生じました。しかし、まずは現状と理想を明確にし、そのギャップをどのように埋めるかを段階的に考えることが大切だと学びました。 ロジックの魅力はどう? そして、そのプロセスでロジックツリーという手法が登場します。従来、分析とはただ蓄積された情報から何かを取り出す作業だというイメージがありましたが、目標を設定し、漏れなく重複なく案を出し、その中から最適なものを選び出す手順があることに気づき、分析が思っていたよりもクリエイティブな作業であると実感しました。 経営企画室との連携は? また、これまで経営企画室の仕事について疑問を抱いていましたが、おそらく同様のプロセスで業務が進められているのだろうと感じました。今後、経営企画室と連携し株主総会などの準備に関わることになるため、直接データ分析や資料作りに携わらなくとも、同僚が分析した内容を参考にして学ぶことができると考えています。 実践で見えた効果は? さらに、日々の業務においても様々な問題や課題が発生しているため、今回学んだ手法を早速実践してみたいと思います。特に、安全衛生の分野では業務の範囲が定まっておらず、どこから手をつけるべきか迷っていたため、まず全体をMECEで洗い出し、その上でロジックツリーを用いて優先順位を整理する方法は、上司に説明する際にも非常に分かりやすいと感じました。 MECEの見直しはどう? しかし、自分では完璧なMECEになっていると思っていても、実際には抜けや漏れがあるかもしれません。MECEのチェックポイントについて、何か良い方法があるのか疑問に思います。

データ・アナリティクス入門

データ分析の本質を学ぶ喜び

分析手法とは何か? 分析とは比較を通じて行われ、仮説を立てた後にデータを収集・加工することで得られる気付きが重要なプロセスです。定量分析の視点としては、インパクトの大きさ、ギャップ(差異)、トレンド(変化)やばらつき(分布)、パターン(法則)を考えることが重要です。データの代表値として単純平均、加重平均、幾何平均などを使い、ばらつきを見るためには標準偏差をとらえる方法が有効であることが分かりました。また、データを扱う際には、加工してビジュアル化することで一目で理解できるグラフを作成することも重要なプロセスです。 データの特異点をどう見つける? データ分析ではまず平均値を考えがちですが、データの散らばりから特異点を見つけることも重要だと分かりました。そのため、業務(調査系)で平均値のデータを参照する際は、背景に注意し、表面上の見栄えに騙されないよう気を付けたいと思います。また、実証実験で扱うデータについても、属性ごとのデータを無作為に取って平均値を出すのではなく、何と比較するのかを念頭に置き、そのデータで何を伝えたいのかを考慮してデータ分析の設計を進めたいです。今週のGailで学んだように、グラフには特性があり、自分の伝えたいデータをどのようなグラフを使って表現するかを慎重に検討することが重要です。 幾何平均やグラフをどう活用する? 今回学んだ幾何平均は耳慣れない単語だったので、自分でもう少し調べてみたいと思います。また、エクセルなどでよく使うグラフごとの特性について詳しく調べ、どんな場面でそのグラフを使用すべきかを理解できるようにしたいです。今回の学びを定着させるために、実証実験でデータ取得を検討しているメンバーに共有する予定です。

「分析 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right