クリティカルシンキング入門

ビジネス文書・プレゼン資料を一段上の品質にする方法

学習を通じて得た新たな知識とは? 今回の学習を通じて、適切なグラフの選び方やスライドの作成方法、ビジネス文書がどのように読まれるかについて多くの学びがありました。以下に、それぞれのポイントについて述べます。 グラフ選びでデータをより見やすく まず、グラフの見せ方についてですが、データの種類に応じた適切なグラフ形式を選ぶ重要性を感じました。例えば、時系列データには縦の棒グラフ、変化や経緯を表現したい場合は折れ線グラフが有効です。また、要素を表現する際は横の棒グラフ、要素間の比較には帯グラフが適しています。これにより、データが持つ意味を視覚的に明確に表現することができ、プレゼンの受け手にも理解しやすい情報を提供できます。 見る側に立ったスライドデザインは? 次に、スライド作成のポイントについて学びました。特に印象深かったのは、「見る側の視点に立って主題がわかりやすいように」作成することの重要性です。具体的には、グラフなどで見てほしい部分を強調するために矢印を使用することなどです。これにより、視覚的なガイドラインが提供され、見ている人がパッと理解できるスライドを作ることができます。 関心を引くビジネス文書の工夫 ビジネス文書に関しては、冒頭にアイキャッチを置く工夫が特に有用だと感じました。イメージが湧きやすい、意外性がある、具体的な理由や方法を知りたいと思わせるような要素を盛り込むことで、読む人の関心を引き付けることができます。これにより、実際のメールや案内文の返信率向上に繋がることを期待しています。 具体的な実践計画としては、リード向けメール作成の際には1日最低5件はアイキャッチを配置し、試行錯誤を重ねて改善を図るつもりです。また、フォロー結果を分析する際には1か月に1回以上、プレゼン資料の質とグラフの活用を意識して作成します。四半期ごとの報告プレゼン資料にもこれらの学びを反映し、より質の高い資料を提供することを目指します。 以上の点を踏まえ、今後の業務に活かしていきたいと思います。

データ・アナリティクス入門

フレームで切り拓く問題解決

分析で何が分かる? この講義では、業務の問題解決のために「分析」を徹底的に学び、質の高い意思決定スキルを向上させることがテーマでした。分析とは、比較を行うことにより現状を理解する手法であり、問題解決に取り組む際は、まず解決すべき問題を明確にし、状況の全体像を把握する必要があると感じました。 仮説はどう練る? さらに、問題点の仮説を立て、どのようなデータを用意し、どのように加工して何を明らかにするかというストーリーを作ることが重要です。闇雲に分析を進めるのではなく、グラフを活用するなどして、周囲への説明が分かりやすくなる工夫が求められます。 どんな枠組みを活かす? また、今回の講義では様々なフレームワークを活用する手法についても学びました。ロジックツリーを用いてMECEに問題を絞り込む方法、定量分析の視点として何を比較対象にするかやどのグラフを使用するか、さらにデータを平均値や中間値に集約して分析する方法など、具体的なアプローチが紹介されました。相関係数や度数・時系列・パレート分析といった数字に基づいた分析の手法や、3Cや4Pの軸で仮説を広げる方法にも触れ、ビジネスにおける仮説には結論の仮説と問題解決の仮説の二種類があることも学びました。 実践でどんな変化? 私は営業支援の仕事に従事しており、データ分析を通じた得意先への課題解決提案を今後も継続していく考えです。これまで自己流の分析やストーリーの立て方では、汎用性に欠ける面やサポートのしづらさを実感していましたが、本講義で学んだフレームワークや定型の分析手法を取り入れることで、体系的に仕事を進められるようになりました。特に、若手メンバーへのサポートにも大いに役立てたいと考えています。 今後の対策は? ただ、問題解決の4つのステップに対して、それぞれに合った分析手法やフレームワークの整理がまだ十分にできていないと感じています。今後は、皆さんと議論しながら確認する機会を持ち、より深く理解を深めていきたいと思います。

クリティカルシンキング入門

数字の力を引き出す分析の秘訣

データ分析の重要性とは? データに基づいて原因を突き詰めていく際、数値を分解しグラフなどに視覚化することで、傾向が見えてくることがあります。さらに、その数値を分解していくことで、他者に説明する資料としても、表よりもグラフの方が一目瞭然です。 効果的な分解方法を探る 分解の方法としては、"いつ(when)"、"誰が(who)"、"どのように(how)"などがあります。博物館のワークでは外的要因に注目しましたが、そのものの数値自体も分解することが大切です。 発見を得るための試行錯誤が不可欠 切り口や切り方を変えて、いろいろ試してみると違った発見があるかもしれません。キリの良い数字でまとめるのではなく細かく刻むことで、見えてくることがあります。また、段階的に切り口を広げて掘り下げていくことで、新たな発見ができることもあります。様々なアプローチを用いて分析をする結果、データに説得力が生まれます。 分析のプロセスから何を学ぶか? 分析を進める中で、切り口や刻み方によって何も見えてこないこともありますが、それもまた意味のある結果だと言えます。このように色々な方法を試すことが重要です。 実際のデータで見る数字の力 私はあまり数字を扱う業務はありませんが、数字を分析することで見えてくるものがあります。例えば、製品群ごとの売上金額や粗利金額の月別、前年比の比較、契約件数と売上金額の関係性、契約金額と粗利益率の関係などを調べることができます。 優先すべき分析視点とは? これらのデータから、売上低調製品の原因や高粗利商品などの理由を探ることができます。月に一度、売上データを集計し分析を行い、そのデータを基にプレゼン資料を作成します。資料作成の際には、ファクターに基づき数字を視覚化することで説得力のある資料を作成します。 営業活動におけるデータ活用 また、自分の営業活動においてもアポイント数や進捗などを視覚化し、得意先や物件ごとの売上金額、粗利金額などをまとめています。

データ・アナリティクス入門

プロセスで発見!学びの秘密

原因はどこにある? 問題の原因を探るためには、まずプロセスを細かく分解し、各段階でどこに問題が潜んでいるかを仮説検証する手法が重要です。複数の選択肢を洗い出し、根拠に基づいて適切な判断を下す点にも着目しています。また、A/Bテストを実施する際は、できるだけ条件を整えた上で比較することが求められます。 効果的な分析法は? 具体的なデータ分析の方法としては、まずステップを踏みながら問題の精度を高めるアプローチと、仮説をもとにデータを収集し、より良い解決策に結び付ける手法が組み合わされています。これにより、最適な解決策の検出が可能となります。 分解とテストの極意は? プロセスを分解する方法とA/Bテストのポイントを組み合わせることで、より高度なデータ分析が実現されます。仮説検証と条件を揃えた比較の両面からアプローチすることで、実際の検証結果に基づいた改善が期待されます。 実例から学ぶには? 実際の事例としては、ポイント会員向け利用促進キャンペーンにおいて、若年層の反応を探るために、若者が関心を持つジャンルの店舗を複数選定し、クリエイティブのA/Bテストを実施する計画が挙げられています。過去のキャンペーンデータを活用し、ポイント付与がどの層の購買に影響しているかを機械学習を用いてアプローチする手法も取り入れられています。 次回でどう活かす? 次回のキャンペーンでは、会員データからターゲットとなる層の購買パターンを複数洗い出し、ロイヤルカスタマー化につながる経路を明らかにすることが目標です。洗い出されたカスタマージャーニーに基づき見込み客にアプローチし、その反応をPDCAサイクルで検証・改善していく計画です。 全体をどう見る? 全体として、プロセスの分解とA/Bテストの方法を的確に押さえたアプローチが示されており、仮説検証を実際のデータに基づいて試すことで理解が一層深まる内容になっています。今回学んだ内容を次のプロジェクトでどのように活かせるか、引き続き考えていきましょう。

データ・アナリティクス入門

仮説思考が拓く学びの扉

仮説思考は何のため? 仮説思考は、効率的な分析を行うために欠かせない手法です。基本的なステップは、目的(問い)の把握、問いに対する仮説の設定、データの収集、そしてそのデータをもとに仮説を検証する、という四段階で構成されます。 どのデータを集める? データ収集の方法は大きく二つに分かれます。まず、既存のデータを集める方法として、検索エンジンや各種リサーチサイトを活用します。次に、まだ存在していないデータについては、実際に観察したり、有識者へのヒアリングやアンケートといった方法で収集を行います。 五視点はどう活かす? また、仮説思考を実施する際には、以下の五つの視点が重要です。インパクトではその影響力の大きさを、ギャップでは何がどのように異なるのかを捉えます。トレンドでは時間的な変化や変曲点、外れ値に注目し、ばらつきではデータの分布が偏っていないかを確認します。最後に、パターンの視点からは、法則性があるかどうかを見極めます。 グラフ化の手順は? グラフ化を行う場合には、次の三つのステップが有効です。まず、仮説や伝えたいメッセージを明確にし、次に比較対象を設定、そして適切なグラフを選んで情報を整理します。 経験が必要な理由は? 仮説思考については、これまでチームでの実践経験がないため、上司に相談しながら取り組むことが望まれます。一方、データ収集に関しては、企業独自の情報をうまく活用することで、新商品の開発に役立つ可能性があります。また、来月更新される免税施策に関しても、その対応方法を検討していく必要があります。 新規取り組みの課題は? 組織の一員として新たな取り組みを始めるのは容易ではありませんし、チーム全体が仮説思考の本質を正しく理解しているかどうかも不透明です。来週から開始されるデジタルのショッピングクーポンの運用にあたっては、まずデータ収集を行い、半年先や来年度の数字を分析する可能性を模索するものの、まずはデータ収集自体に時間を要する点が懸念されます。

データ・アナリティクス入門

生徒集客の裏側を数字で解明!

問題の背景は何? ミュージックスタジオの課題では、3W1Hのプロセスを通じて、何が足枷になっているのか、またどのような取り組みが利益に結びつくのかを多角的に分析することができました。さまざまな背景を考慮する中で、問題点が浮かび上がり、どの対策を最優先すべきかを判断する難しさを実感しました。 生徒数増加の課題は? 「生徒数を増やすこと」が売上向上に寄与すると漠然と感じていたものの、原因や具体的な問題点を掘り下げると、考慮すべき要因が多岐にわたることが明らかになりました。一人でその優先度や重要性を選別するのは、非常にハードルが高い作業だと感じました。 対応策は有効か? また、抽出した問題・課題に対する対応策を考える際、今回のイベント開催のように、必ずしも提案が有効に働くとは限らないことを体感しました。そのため、背景にある数値データの分析も併せて検討する必要性を改めて意識するに至りました。 MECEはどう活かす? 「もれなく・ダブりなく」という言葉は以前から耳にしていましたが、今回初めてMECEという考え方に触れました。データクレンジングの際にも一定の意識はあったものの、「もれなくダブりなくもほどほどに感度のよい切り口をたくさん持っておく」という点に大きな感銘を受けました。 現状と理想のギャップは? 取り組むべき問題に対して、「あるべき姿」と現状とのギャップを埋める方法には、正しい状態に戻す対応と、ありたい姿に到達するための対応の2パターンがあることにも気づきました。業務改善の提案にあたっては、現状が悪いという視点だけでなく、現状の良い部分をさらに伸ばしていく視点も取り入れていきたいと感じました。 集客対策はどう検証? 最後に、ミュージックスタジオの事例では、計画通りに生徒を集めることができなかったことが利益に結びつかなかった要因として挙げられていました。これからは、具体的にどのような対策を講じることで生徒を集められるのか、さらに深掘りして考えていきたいと思います。

データ・アナリティクス入門

標準偏差と仮説思考で業務改善を実感

標準偏差をどう使う? 分布やばらつきに気をつけることは、これまでの業務でも意識していましたが、標準偏差という形で数値化できる点は新しい発見でした。これまでグラフなどで傾向やトレンドを可視化する手法は行ってきましたが、標準偏差を用いて数値で比較することは新しい視点でした。これを身につけるために、現在の業務の実例に落とし込み、実践していきたいと考えています。 仮説思考をどう改善する? 仮説思考について、常に意識はしているものの、今週の学習を通じて、自分に仮説の引き出しが少ないことや、自分に都合の良い仮説を作りがちであることを実感しました。これらを改善する方法として、同じ事象を分析する際も常に2つ以上の仮説を立てることをマイルールとし、少なくとも当講座期間中は意識していきたいと考えています。 予測に役立つプロセスは? 四半期ごとの目標を追いかけている環境にあり、週次や月次での予約動向、今後の動向予測などに触れる中で、週次の動向分析時に数値が良い(または悪い)理由を考える際には、Week2で学んだWhat,Where,Why,Howのプロセスを踏んで複数の仮説を持つことを意識していきます。例えば、直近の予約動向が落ち込んだ場合には、「仮説1: 地震の影響」、「仮説2: 地震の影響ではないかも?」というように、あえて真逆の仮説も立ててみるなど、自分の経験や感覚に寄らない形での複数の仮説出しを行っていきたいです。 新しい視点をどう取り入れる? 以上の点を意識していく具体的な方法としては、以下の点があります。 - **複数の仮説出し**:同類の仮説のほか、あえて逆の仮説も立ててみる。 - **標準偏差の活用**:数値化の感覚がないため、これまでに利用してきた分布図などを用いて数値化するとどう見えるかを実践してみる。複数の事例で行い、数値の見え方を感覚的に掴み、実戦で利用できるようにする。 これらを日々の業務で実践し、新しい視点や考え方を自分のスキルとして取り入れていきたいと思います。

データ・アナリティクス入門

思考を深める分析スキルの実践

ロジックツリーの見直しは? 私はこれまでにロジックツリーを用いてメモを取っていたものの、情報に漏れや重複があると感じていました。分析には多様なフレームワークや考え方があるため、正しく使用しないと適切な結果を得られないことを再認識しました。特に、MECE(Mutually Exclusive, Collectively Exhaustive)については軽視していましたが、集団を正確に切り分けることが重要であることを学びました。 感度の良い切り口を取り入れるには? 課題の分析においては、提示された回答と異なる視点で取り組むことがありました。これは必ずしも悪いことではありませんが、今回の回答の方がより優れた切り口であるように思いました。「感度の良い切り口」を意識することが今後の分析への貴重な教訓となりました。層別分解と変数分解についても、これまでは曖昧な使い方をしていたと感じています。どちらを用いるべきかを意識することで、より効果的に分析できると考えています。 さらに、「感度の良い切り口」と「意味のある分け方」という概念は、忘れがちなものの、非常に重要であると感じました。 新たな職場での挑戦とは? 来期には新しい職に就く予定ですが、具体的なイメージはまだ掴めていません。今までの経理財務の経験を活かしながら、売上や費用の分析にロジックツリーやMECE、層別や変数での分解を活用したいと思っています。「感度の良い切り口」や「意味のある分け方」を意識しつつ、分析に取り組んでいくつもりです。 ロジックツリーやMECEを利用する際には、頭の中だけで考えず、図示することによって理解を深めたいと思います。図示した内容は資料として保存し、後からの利用やプレゼンテーション用に加工する際にも役立つでしょう。簡単な方法として、エクセルで図示を試みたり、以前使った「Xmind」というアプリを利用してロジックツリーを描いてみたりすることも考えています。これを機会に、ロジックツリーに挑戦してみようと思います。

データ・アナリティクス入門

仮説構築で新たな視点を得る方法

仮説構築の秘訣は? 仮説を構築し、データを活用して問題解決を進めるためには、いくつかのステップが重要です。まず、問題の発生箇所を明確にすることが必要です。具体的には、問題の所在を深掘りするために、原因仮説を立て、検証のためのデータを集めます。仮説を効果的に立てるためには、フレームワークの活用が有用です。 4Pのポイントは? マーケティングの視点では、4Pフレームワークを使って事業展開を整理することができます。製品、価格、場所、プロモーションの各要素が顧客のニーズや適正かどうかを評価します。適切なデータを集める方法としては、既存データの活用やアンケート、インタビューが挙げられます。各手法の長所と短所を理解して、目的に応じた選択が求められます。 多角的検証は? 仮説を立てる際には複数の仮説を用意し、異なる視点から網羅的に検討することが大切です。仮説の検証に際しては、比較の指標を意識的に選択することが必要です。具体的には、データを収集・分析し、仮説に説得力を持たせるためには、反論を排除する情報まで検討することが重要です。 意義はどこに? 仮説設定の意義としては、検証マインドや問題意識の向上、迅速な対応が可能となる点が挙げられます。こうしたプロセスを経ることで、自分の業務に対する関心を高めることにつながります。 販促の効果は? 販促企画の効果検証や販売目標達成の実績を見る際には、売り上げが伸び悩んでいる商材を特定し、どの要素に問題があったのかを4Pを用いて検証することが求められます。これを元に具体的な施策の効果を評価し、次の糧とすることが重要です。 実績比較はどう? 販売実績を基に、商品ごとの実績を昨年と比較し、価格変動の影響や来客数の動向、プロモーションの効果を定量的に評価すべきです。それにより、次年度の方針を検討することが可能となります。このように、精緻な分析を通じて課題を明確にし、解決策を打ち立てるための指針とすることが重要です。

クリティカルシンキング入門

論理が教える!気づきと成長の実感

学びの意義は? クリティカル・シンキングの講座を通して、体系的な思考の枠組みを学ぶことができました。特に、情報や意見を論理的かつ客観的に分析する能力や、自分の考えを見直す「批判的な視点」の重要性を実感しています。 整理法はどう有効? ロジックツリーやMECEといったツールを活用し、複雑な課題を整理・分解する方法を習得できたことで、「何が本質的な問題か」「どうすれば抜け漏れなく考えられるか」といった視点が業務において非常に役立っています。こうした思考法を実践することで、判断力の向上や誤情報の見極め、さらには問題解決能力の強化につながると感じています。今後はこれらの方法を積極的に活用していきたいと考えています。 提案の要点は? 事業戦略の立案や上層部への提案で重要なのは、「イシューを明確にすること」「論理的な枠組みを構築すること」「根拠に基づいて主張すること」です。これらの要素が、課題の本質を捉え説得力のある提案を行う上で不可欠だと感じています。 実践の工夫は? この理想に近づくため、私は以下の行動を意識して取り組んでいます。まず、業務開始前に「今日のイシューは何か」を自問し、最重要課題を明確にメモにまとめます。次に、資料作成時は「誰に向けて」「何を伝えたいか」「どんな根拠が必要か」を考慮し、構成に工夫を凝らします。また、会議や打ち合わせでは「前提」「論点」「構造」を意識して話すことを心がけ、クリティカル・シンキングの考え方を実践しています。さらに、週に一度業務を振り返り、学びを記録することで知識の定着と応用力の向上を図っています。そして、上司や同僚とのコミュニケーションにおいても論理的な説明を意識し、説得力を高めるよう努めています。 成果への道は? これらの取り組みを続けることで、戦略的な思考をさらに磨き、より高い成果につなげたいと考えています。また、チーム内にクリティカル・シンキングの成果を浸透させる具体的な方法やアイデアがあれば、ぜひ共有をお願いします。

データ・アナリティクス入門

ギャップが扉を開く学びの法則

視点はどう捉える? 一つの課題やギャップを分析するための視点を柔軟に探る発想力を身につける必要性を感じています。現状とあるべき姿のギャップを捉える際、「正常な状態」から「ありたい姿」へと変化するプロセスにもこのアプローチが有用であることに気づきました。普段は「あるべき姿」を重視しがちですが、実際には両方向の視点が大切だと実感しています。 分解方法はどう選ぶ? ロジックツリーの分解方法には、層別分解と変数分解の二つがあることを学びました。特に、普段から層別分解は頻繁に実施しているものの、変数分解はあまり意識していなかったため、今後は意識的に取り入れていきたいと考えています。また、意思決定の際には、プレゼントの内容を決めるプロセスに似た実務への応用も模索中です。 解決プロセスはどう進む? 問題解決のプロセスでは、まず「What」から始め、次に「Where」「Why」「How」へと論理的に展開していく流れを、無意識ながらも実践している現状があります。今後はこのプロセスを改めて意識し、より効果的に活用するための訓練を積んでいきたいです。 MECEはどう活かす? MECEの原則については理解しているものの、実際の議論や分析で漏れや重複が生じてしまうことがあります。今後は、無意識のうちに正確に分類できるよう、何度も実践を重ねていく予定です。 計画はどう実現する? また、中長期計画の立案において、現状から「ありたい姿」へ向かうための具体的な発想法を取り入れ、計画策定に生かしていきたいと考えています。新たな取り組みや期初の方針決定の際にもロジックツリーを意思決定の手段として活用し、実績分析の際には変数分解も取り入れて状況を正確に把握できるよう意識していきます。 課題はどう共有する? 最後に、チーム内で現状と課題を検討する際、まずは「What」から問題を明確にし、相手から提示された資料や提言がMECEに基づいているかを確認することにも力を入れていきたいと思います。

データ・アナリティクス入門

問題解決のプロセスを極めた学び

どうやって問題を整理? 問題解決の第一歩は「何が問題ないのか」を具体的に整理することです。この際、関係者間で「あるべき姿」と「現状」に対する共通認識を持つことが重要です。基本的な流れは、①「何が問題か?」②「どこに問題があるか」③「なぜ、問題が起きているか」④「どうするか」ですが、必ずしもこの順序に縛られる必要はなく、各ステップを行き来することが求められます。 ロジックツリーは有効? ロジックツリーの活用により、全体像を意識しやすくなります。MECE(Mutually Exclusive, Collectively Exhaustive)の考え方に基づいて、意味のある方法で問題を分けることが肝要です。 売上回復の道は? 売上が低迷している商品のリニューアルを考える際には、売上を回復させる目標を新規購入者の獲得なのか、離脱者の呼び戻しなのかによってターゲットやパッケージの方向性が変わってきます。関係者間で売上回復の基準を共通認識として持っていることが必要です。提案を説得力あるものにするためには、MECEを活用して効果的な方向性や代替案を提示します。 市場分析は足りる? プロダクトアウトの新商品の方向性を検討する場合には、市場分析が不足している段階で商品化が決定されたケースもあります。例えば、コンセプト調査を行ったものの生活者の反応が芳しくない場合、ロジックツリーを通じて問題の仮説を立て、検証し、解決策を模索します。 選択肢は適切? アンケート調査では、選択肢設定にMECEを用いることで効果的な結果を得ることが可能です。 プロセスの流れは? 商品化作業に取り組む際のプロセスは以下の通りです。まず、問題の共通認識を揃えるためにデータ収集を行い、関係者間で問題認識を共有します。次に、チームでロジックツリーを用いて網羅的に「Where」「Why」「How」の案を出し、それに基づいて方向性の第一候補と代替案に絞り込みます。その後、経営陣にこれを共有します。

「分析 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right