データ・アナリティクス入門

グラフでひも解く学びの軌跡

グラフ活用法ってどうする? 今週は、グラフの活用方法について学びました。データのばらつきを視覚的に把握するために、ヒストグラムが有用であると理解しました。たとえば、生徒の年齢のばらつきを見る際には、割合ではなく実数の分布に注目すべきだという点が印象的でした。 どの数値がポイント? また、分析でよく使われる代表的な数値についても復習しました。単純平均・加重平均・幾何平均・中央値など、それぞれの計算方法と用途を確認し、特に平均値は外れ値の影響を受けやすいことに注意が必要だと実感しました。 現場の指摘はどう読む? 現場でDX担当としてデータ分析に取り組む中、先日、部署ごとの退職率を比較して報告した際、経営層から数値の重み付けを考慮するよう指摘を受けました。当初はその意図が分からず戸惑いましたが、加重平均の考え方に近いのではないかと理解し始めています。ランキングだけで示すのではなく、ヒストグラムなどのグラフを用いて視覚的に説明できるよう工夫したいと思います。 数学の基礎は何が大切? 一方で、数学の基礎の重要性を再認識しました。平方根や標準偏差、正規分布と2SDなどの数式が全く理解できず、焦りを感じています。まずは基本を押さえ、Excelの関数でどのように表現できるのか試してみるとともに、ピボットテーブルの復習にも取り組む予定です。 具体例の探し方は? 今回の分析では、どの指標を使うべきか具体例がすぐに思い浮かばなかったため、今後はより多くの具体例を調べるとともに、実際に手を動かして理解を深めるつもりです。遠回りになるかもしれませんが、様々な切り口で数値を検討していきたいと思います。 専門用語、理解できる? また、専門用語の理解もまだ十分ではないと感じており、関連するデータの傾向把握についても、ひとつひとつ学んでいく必要があると実感しました。これからも引き続き、知識を着実に身につけていきたいです。

戦略思考入門

戦略的思考で広がる未来への扉

戦略的な人の思考法とは? 戦略的だと感じる人は、目の前のことをただ片付けるだけでなく、常に最終的な目標を考えています。その過程自体にも意味を見出し、冷静に状況を分析することで、限られた時間と資源を最大限に活用して最短・最速で対応する方法を見つけ出します。彼らは、ただ美しい計画を描くだけでなく、実際のビジネスに応用できる実践的な手法を持っています。 戦略的行動のメリットは? 戦略的に行動することのメリットは、他の工程や部署をより広い視点と高い視座で理解し、行動できることです。これは信用や職場での評価を高め、昇進のチャンスを広げることにつながります。また、成功に近づくことで、ミスを減らし、スケジュールを確実に進行させることができます。さらに、失敗経験も次に活かすことができるのです。 戦略的に行動するためには、先を見据えてゴールを明確にし、何をやり何をやらないかを判断する能力が必要です。さらに、自分ならではの独自性を磨き、他と差別化することも大切です。 自分の成長に必要なスキルは? 私自身、これらを学びながら、ブレずに実現可能なビジョンに基づいて計画的に行動できるようになりたいと考えています。そのためには、自分の視野を広げ、定量的な思考法や知識を増やしながら、周囲を導くカリスマ性を身につける必要があります。 「最速・最短」とは本当に必要か? 特に重要なのは、結果から逆算して思考する力を強化し、スケジュールだけでなく戦略的な計画を立てることです。事業計画を立案する際には、関連部署との調整、売上予測や売上管理、メンバーの役割分担などを詳細に設定し、また各分析手法を使って有意義な行動に転換することで、プロジェクト全体の戦略的な推進が可能となります。 今回特に意識したいのは、「最速・最短」を心に留めながらも、自己犠牲を必要とする状況においては、それが本当に戦略的な必要性があるのかを常に考え、行動に反映させることを習慣化することです。

クリティカルシンキング入門

データで発見!POS活用の新視点

グラフ化はどう効果的? 数字をグラフ化することによって、新たな発見が得られることがあります。また、比率の計算を通じて、全体に占める割合を分かりやすく理解できます。これまであまりグラフ化を行ってこなかったので、これからは積極的に取り組んでいきたいと思います。反対に、「データを加工しないままだと、重要な点を見落とす可能性がある」ということも意識して注意を払いたいと思っています。 分解方法をどう見直す? データの分解の仕方についても、自分が考えていたもの以外にさまざまなアプローチがあることに気づかされました。「データの分け方を工夫する」という段では、二つの分け方から「大学生に集中している」という点を見落としていました。無意識のうちに「同じ年数の幅で比較する」という方法に固執していたようです。また、「分解をする際の留意点を知る」では、解釈の仕方の誤りに気がつきました。一度解釈をした後でも、もう一度立ち止まって「本当にそうか?」と再考する必要性を改めて認識しました。 分解の意義は何? 講義を通じて、「分解してみても何も見えてこないことは失敗ではない」「迷ったときはまず分解を試みる」「分けていくことが理解を深めるための手段」であるという、データを分解して解釈する際のポイントを学ぶことができました。 POSデータの活用は? 私が従事している小売業においては、業務で頻繁にPOSデータを扱います。顧客の動向を把握するために非常に有効なので、POSデータを分析するときにはこの学びを実践していきたいです。特に、グラフ化を意識して視覚的に理解することに重点を置いています。 グラフ化の効果は? 具体的には、POSデータを週ごとにExcelで表にして、グラフ化を通じて視覚的に把握します。そこから見えてきた変化をもとに、今後の方向性を決定し、業務に生かしていきます。毎週さまざまな切り口を試し、効果的な加工の方法を探っていく予定です。

データ・アナリティクス入門

問題解決への仮説立案と検証の実践記

問題発見にどのフレームワークを適用すべき? 問題発見のステップとして、まずWhereのフェーズでどこに問題があるかを考えます。この際、仮説を立て、その仮説が成り立つのかを検証するためにデータを集めます。仮説を立てるときには、フレームワークも有効です。代表的なフレームワークとして、3Cや4Pがあります。 3Cは「顧客」「競合」「自社」の三要素、4Pは「Product(製品)」「Price(価格)」「Place(流通)」「Promotion(広告・販売促進)」を指します。これらのフレームワークを使って仮説を立てると、どこに問題があるのかが明確に見えやすくなります。 4Pを用いた仮説とは? 例えば、今回学んだ例では4Pを使いました。製品については「大学生にとって魅力的な講座ではないのでは?」、価格については「大学生にとって高すぎるのでは?」、流通については「立地が悪いのでは?」、広告については「大学生に認知されていないのでは?」と考えることができました。 仮説検証に必要なデータの収集方法 仮説には結論の仮説と問題解決の仮説があります。これらを過去、現在、将来の時間軸で考えることも重要です。仮説を検証するためのデータの集め方として、現存するデータでの検証方法や新しいデータを集める方法も考慮します。 見逃しやすい観点を見直すには? 現在、分析を行いながら、起こっている現象に対して、いくつかの仮説を立てています。しかし、振り返ると今回学んだフレームワークに当てはめた場合、観点が漏れていることに気づきました。今回学んだことを活用して改めて考えてみたいと思います。 問題の仮説を具体的に書き出し、その際にはフレームワークを適用します。仮説には必要なデータもセットで書き出し、最低でも四つの仮説を立てます。そして、その仮説が正しいのかを来週までに仮の結論を出しておきます。この仮説と検証のプロセスを他人に説明し、共有していく予定です。

リーダーシップ・キャリアビジョン入門

理論で実現!やる気UPの秘訣

理論はどう活かす? 今回学んださまざまな理論を通じて、モチベーションの向上方法について再確認することができました。業務の中で実践している手法は経験に基づくものですが、マズローの欲求の五段階説やハズバーグの動機付け・衛生理論といった理論的枠組みに沿って現状の要因がどの位置にあるのかを明確に把握することで、より高い効果が期待できると感じました。 まかせ方はどう? また、実行段階での「まかせ方」については、干渉を最小限に抑える努力や、プロセスどおりに実施できているか、当初の想定通りの結果が出ているかを定期的にフォローする点が十分でなかったと認識しました。各地で業務を進める中、つい口を出してしまったり、細かなフォローが不足していたと実感しました。 フィードバックはどう? さらに、効果的なフィードバックについても、情報伝達はできていたものの、相手が行動を立て直すための支援となるフィードバックが不十分であったと理解しました。 会話はどう見える? 日常のコミュニケーションでは、相手の様子や言動にしっかりと注意を払い、変化に気付けるよう意識を高めたいと考えています。また、定期的な面談や業務の振り返りの機会を活用し、本人に気付きと学びを促すフィードバックを行うことで、より効果的なサポートを実現したいと思います。 動機づけはどう? これらの取り組みを通じて、職員一人ひとりがモチベーションや仕事への動機づけを深く理解し、意欲的に働ける環境を整えることで、強い組織づくりに必要なエンパワーメント力を養っていきたいです。 未来はどうなる? 今後は、面談や振り返りの際に理論をもとに傾向を分析し、各人が意欲的に取り組める業務の選定や依頼の方法を検討することも視野に入れています。状況や体調などの変化を踏まえ、まずは相手の理解を深める「聞き手」としての役割を大切にしながら、気付きと学びを促す機会や能動的な実験ができる環境づくりに努めます。

データ・アナリティクス入門

検証の軌跡が未来を変える

原因って何が影響する? 問題の原因を追究するためには、対象となる現象が起こるまでのプロセスを細かく分解し、各段階の要素を把握する手法が有効であることを学びました。また、複数の可能性を網羅的に洗い出し、根拠に基づいて最適な解決策を絞り込む方法も身に付けることができました。 検証はどのように進む? 仮説検証の手法としてのA/Bテストにおいては、検証対象の効果を正確に判断するために、できる限り条件を揃えた同一環境下で比較することの重要性を再認識しました。これにより、得られる結果がより信頼性のあるものになると実感しました。 なぜ離脱が発生する? さらに、ユーザーの利用過程をプロセスに分解し、どの段階で離脱が発生しているのかを探るファネル分析についても、具体的な事例を通じて理解を深めることができました。一方で、実際にA/Bテストの結果をもとに今後の方針を決定する際、テスト実施自体に対する関係者からの合意や納得を得る難しさを改めて感じる機会もありました。 分析のポイントは? そこで、What、Where、Why、Howの各ステップに沿って分析を進める重要性を認識しました。特に、WhyとHowの部分にスムーズに入れるよう、まずはWhatとWhereについて関係者全員で共通認識を持つことが不可欠です。また、総合演習では「満足度が下がっている」という結果だけに飛びつかず、どこに問題があり、なぜそのような状況に至ったのかを分解し、分析・判断することの大切さを学びました。 具体策はどうすべき? 具体的には、以下の点が重要です。まず、What、Where、Why、Howの各段階に沿って、問題を丁寧に分解すること。次に、不正解の仮説は存在しないという前提に立ち、考えられる仮説を2~3案以上、網羅的に検討する癖をつけること。そして、A/Bテストやファネル分析を通じて仮説の正否を検証し、施策の精度向上につなげることが大切だと感じました。

クリティカルシンキング入門

データで見つける思考の新発見

データ分解で何が見える? 与えられたデータをどのように分解するかによって、見えてくるものが大きく変わることを体感しました。また、グラフに可視化することで、数字だけでは見えない傾向が明確に浮き彫りになることも理解できました。 思考癖に気づく理由は? データを要素別に分解した際、関連しそうなものを安易に結びつけて一つの傾向として捉えてしまう自分の思考の癖に気づきました。本当にその傾向が正しいのかを確認せず、安直に結論を出して解決策を立てるのではなく、その仮説をもとにさらに分解し、複数の切り口から丁寧に検討することが必要だと感じました。具体的には、「who」「when」「where」「how」といった視点から考えることを学びました。 ターゲット分析はどう進む? また、あるホテルでの活動において、ゲストが楽しみながら地球環境や社会に貢献できるようなサービスを考案する際には、ターゲットを定めるだけでなく、既存の客を分析するために今回学んだ切り口が役立つと感じました。例えば、「who」年代別、属性、「where」出身国、「what」目的、「when」時間帯、「why」選択理由、「how」交通手段や情報源などです。 サービス評価のタイミングは? さらに、カスタマーサービスを分析する際にはプロセスの分解を行い、滞在のどのタイミングで満足度が高いのか、また低いのかを理解し、サービス改善に努めたいと思いました。 根拠をもとに提案は? このような視点から考慮することで、事象の解像度が上がり、思いつきでなく根拠をもとにアイディアを提案できると感じます。日々の業務でアイディアを提案する際には、データをどのように分解して仮説を立てたかを説明することが重要だと思いました。また、「事象分解」「変数分解」「プロセス分解」のいずれかの方法が適しているのか、また切り口を5W1Hから考慮するなど、丁寧に思考する癖をつけることが大切だと考えます。

戦略思考入門

ROIで学ぶ!経営資源の効果的活用法

何を学んだ? 今週は、これまでの学びを整理し、各週の要点を再確認することに集中しました。以下は、特に自分にとって重要だと感じた部分をまとめたものです。 どう活用する? まず、自社や自身の優れた経営資源を分析し、理解することは重要であり、状況に応じてそれらをどのように活用するかを考える視点が不可欠です。また、個人のリソースには限りがあるため、やることと捨てることの優先順位をつける必要があると再認識しました。惰性で業務を進めるのではなく、判断基準を持ちながら考えることが求められます。そのためには、定量的なエビデンスに基づき、さらにROI(投資対効果)を考慮する重要性に気づきました。 視野を広げるには? さらに、自身の視野狭窄や見落としを防ぐためには、集合知を意識して他者と相談し、意見をすり合わせることが大切です。 現部署の取組みは? 現部署では、既存業務の効率化・高品質化を目的としています。また、新規業務の構築やフロー作成にも関わる機会があり、それぞれに適切な目的や目標設定が必要です。日々のMTや資料作成時にはFWを活用できます。 助けを求めるには? 個人での業務には限界があるため、大きな成果を達成するには周囲の助けが必須です。その際、伝えるべき情報を正確に伝え、納得感や理解を得るには、FWを活用した情報整理やKSF(重要成功要因)や課題の特定、戦略立案が不可欠だと感じました。 新知識の収集は? 新規業務の担当窓口に任命されましたが、未知の業界であるため、新たな知識・スキルを収集し続け、現状の業務フローを理解する必要があります。3C分析を中心に使用して理解度を深め、顧客の潜在ニーズや課題を抽出することを目指します。 習慣化はどうする? 活用方法やタイミングについてはまだ慣れていないため、自分のスタイルを見つけるべく、地道に繰り返し実践して習慣化する努力を続けます。

データ・アナリティクス入門

データの本質を掴む!実務に活かす分析技術

分析の本質とは? この学びを通じて、分析の本質を理解することができました。分析とは「比較」することが核心であり、特に条件を整えた「Apple to Apple」の比較が重要です。まずは「何を明らかにしたいのか?」を明確にし、そのために「何と何を比較すべきか?」を定めることが大切です。 棒グラフ作成の注意点は? 印象に残った点として、棒グラフの縦軸と横軸など、細かな部分にまで注意を払ってより分かりやすく伝えることが求められるということです。例えば、縦軸は上がった・下がったを示し、横軸は要素間の比較を表現します。普段は手元のデータだけで判断してしまうことが多かったと気づかされました。この分析の本質は、課題解決のための分析決定だけでなく、解決策の実行後の効果検証にも活用できると感じました。 具体的な応用法は? 具体的な応用として、解決策の効果を比較することが挙げられます。解決策を導入する場合としない場合での比較を行い、条件をできるだけフェアに揃えることが重要です。この考え方を業務に活かすことで、顧客の課題を定量的に解決する方法を確立し、納得できる成果を提示できるようになると期待しています。 より良い分析へのプロセス この知識はすぐに実務に活用できるもので、特に分析の本質を理解できたことは大きな収穫です。今後、以下の流れを意識して分析の質を向上させていきたいと思います。 まずは課題の明確化から始め、何が課題なのかを特定し、解決するためにどのような分析が必要かを考えます。次に仮説を設定し、それを検証するためのデータを収集します。重要なのはフェアな条件で比較できるようにデータを集め、分析結果を分かりやすく可視化することです。 最後に、結果を解釈し示唆を整理します。ただ結果を提示するだけではなく、その傾向や含意をまとめ、目的に沿った分析であるかを確認します。この一連のプロセスを通じて、より質の高い分析を目指していきます。

データ・アナリティクス入門

データの見方が変わる瞬間

基本思考をどう整える? 今回の動画や演習を通して、従来は何となく基本的な見方でデータを眺めていた自分に対し、根本的な考え方の基礎を再認識することができました。表面的な比較だけでなく、意図的にデータを加工して比較することの重要性を実感しました。 数字と視覚、どっちが正しい? また、他のデータと比べる際には「数字に集約して捉える」ことや「目で見て捉える」視点が必要だと認識しました。一目で把握できる程度のデータ数であれば十分ですが、ある程度の規模がなければデータの価値は向上せず、大量のデータを扱う際には加工する手順が不可欠だと理解しました。単純に平均値を見るのではなく、値の分布やばらつきに注目することも大切です。 仮説とデータの整合は? さらに、平均値やばらつきを基に、大量のデータを加工し、ビジュアル化・グラフ化を行うことで仮説と照らし合わせ全体を俯瞰する手法の重要性を再確認しました。分析のプロセスでは、まず目的や仮説を明確にした上でデータの収集が行われ、その後、仮説の検証や分析を繰り返すことが意義のあるものだと改めて理解しました。 各種平均の使い分けは? また、データの捉え方においては、代表値としての単純平均、加重平均、幾何平均、中央値や、散らばりとしての標準偏差があり、それぞれを目的に応じて適切に使い分けることが重要であると感じました。まずは自分なりの仮説やストーリーを意識し、必要なデータを整理してから分析に取り組むことが大切です。さらに、データのビジュアル化にも注力し、目で見て整理する方法にチャレンジしていきたいと思います。 未来のデータ戦略はどう? 今後は平均値やばらつきという視点を重視しつつ、加重平均や幾何平均も意識的に活用していきたいと考えています。また、標準偏差については、効果的に使用できる場面を見極め、業務の中での活用を目指すとともに、ツールの扱いについても理解を深める必要があると感じました。

データ・アナリティクス入門

仮説と問いで広がる学び

結論と問題は何が違う? ケーススタディを通して、私は結論の仮説と問題の仮説の違いについて学びました。これまで結論と問題の仮説を意識することはほとんどありませんでしたが、結論の仮説は答えを先に仮定してから分析を進める手法であり、問題の仮説は問題の本質や真因に迫りながら「なぜ?」と問い続ける流れであると理解するようになりました。 考えの整理はどうする? また、仮説を立てる際には、自分の考えを整理し、納得感や他者への説明力を高めるために、網羅性が非常に重要だと実感しました。誰が読んでも理解しやすいようにフレームワークを活用することで、従来の方法に比べ、思考が整理され、見やすく理解しやすいアウトプットが得られると感じています。 時間軸の重要性って? さらに、課題を考える際には、過去・現在・未来という時間軸で捉えることが重要であると学びました。問題がいつ発生しているのかを明確にすることで、現在の状態を正確に把握し、なぜその状況になったのか過去を振り返り、将来の理想像に向けて現状で何をすべきかを考えることで、より納得のいく議論ができると感じています。 企画で何を考える? 通常の業務において新商品や新機能を企画する際は、価値(魅力)とコストのバランスを考慮します。コストを削減する方法を検討する過程では、複数の仮説を立てるとともに、迅速に検証を行いアウトプットに結びつけることが求められます。うまくいかなかった仮説に対しては、なぜ失敗したのかをしっかり確認し、次につなげることが大切です。 国際展開の特徴は? また、現在の業務では、同じような製品を複数の国で展開しています。各国の特徴や強み・弱みをフレームワークを用いて整理し、そこから抽出した課題に対して改善策をいくつかの仮説として立て、検証を実施しています。このプロセスをグループ内で共有することで、より広い視野での理解が進み、全体のパフォーマンス向上につなげています。

クリティカルシンキング入門

文章を正しく伝える技術を磨く旅

文章はどう正しく伝える? 文章を書く際に、ただ伝わるだけでなく「正しく」伝わることの重要性を改めて感じました。文法的に正しい文章が相互認識のずれをなくし、的確な理解に繋がると実感したので、まずは自分自身が正しい文章を作れるようにすることが重要です。 伝えたいことは何? また、「何を伝えたいのか」を明確にすることが不可欠だと感じました。「イシュー」を明確にすることで、伝えたい内容が確実に相手に伝わるためです。このように文章を評価する考え方は新鮮で、言いたいことを分解・加工する方法は、これまでの学びを実践する上で基盤となると感じました。 イベント開催のコツは? イベント開催では、多くの人や部署を巻き込む必要があります。関係者が多いほど、目的や内容が誰にとっても一貫して明確である必要があります。このスキルがなければ生産性や効率が低下し、良い結果を生み出せません。また、営業企画や課題解決のために、実施理由やその打ち手の根拠を明確にすることが今後ますます大事になってくるでしょう。「なぜそれがいいのか」を伝えることも、重要な取り組みとなっていくと考えています。 イシュー整理の方法は? これからは「イシュー」をまず特定し、ピラミッドストラクチャーを用いて言いたいことを可視化し整理していきます。営業企画提案では「目的」「課題」「要因分析」「打ち手の根拠」などの項目を明確にしながら構成していきたいと思います。また、イベント開催や企画時には、関係者にも同じように伝わるよう、依頼メール作成時などには自分での見直しだけでなく、チームメンバーにも確認してもらうなどして、正しい文章作成を進めていきたいと考えています。 日々の学びはどう? さらに、本を読む習慣をつけるため、週に1回程度、400文字の文章を作成することを実践しています。これにより、読み終えた本から得た学びや要約を自分なりに整理してみたいと思っています。

「分析 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right