データ・アナリティクス入門

仮説の裏側にあった4つの意義

仮説の意義は何? これまでは、なんとなく仮説を立てることに取り組んでいただけでしたが、実はその背後に4つの意義があることに気付いていませんでした。特に、行動の精度向上に直結するという点はあまり実感していなかったため、その効果に驚きを感じています。今後は、この意識を持って仮説の立案に取り組んでいきたいと考えています。 仮説共有はどう役立つ? また、今後の仕事で複数人で販売実績を分析する際には、仮説を立てる意義を明確に伝えることが重要だと感じています。周囲とこの意義を共有することで、単に他人の仮説に依存するのではなく、全員が主体的に分析に取り組む体制を作ることができると思います。さらに、説明時に意識することで説得力が向上していると実感しており、今後はその点についても周りからフィードバックを受けながら改善していきたいと考えています。

クリティカルシンキング入門

実務で活きる!効果的な問いの立て方

初動で何を押さえる? 取り組むべき問いについて、最初の一歩からずれてしまうと、異なる論点へ進んでしまう可能性があります。したがって、組織やチーム全体で方向性を共有することが非常に重要だと感じました。イシューを特定するためには、問いを明確にし、具体的に考え、一貫して押さえ続けることが大切です。 採用手法の見直しは? 実務においては、新卒採用や中途採用の手法について検討する際、キャリアフェアの動員数を増やすことだけに固執せず、イシューがどこにあるのか、そして他に利用できるチャネルを探求していく視点が重要だと学びました。 採用効率向上の方法は? はじめに、どのような手法が考えられるのかリサーチし、それを書き出してみます。そして、ターゲット層を分析し、具体的にどのような行動が採用効率を向上させるのかを検討していきたいと思います。

クリティカルシンキング入門

視点を広げて苦情対応を改善する方法

MECEはどう捉える? MECEに分解することについては言葉で知っていたものの、実際に考えると難しい部分もあると理解しました。全体像を丁寧に把握することが重要であると学びました。様々な観点から数字を分析し、漏れや重複がないか確認しながら、日々の業務に活かしたいと思います。 苦情対応の現状は? 私は苦情対応を業務で行っており、年間で約50~60件ほどの苦情を受け取っています。これまで、年間傾向の分析が疎かになっていたため、この分析を生かして品質改善に努めたいと考えています。 改善の具体策は? まず、苦情を製品別、内容別、製造所別など、様々な観点で集計・分析します。そして、そこから改善点を見つけ出し、製品品質の向上につなげていきたいと思います。また、分析結果を基に改善計画を立て、具体的な行動に移していきます。

データ・アナリティクス入門

仮説実践!即断で未来を掴む

効果測定は本当に? A/Bテストの実施により、短期間で効果測定が可能であることを実感しました。一方、単にデータ収集に時間をかけるだけでは、必ずしも問題解決には結びつかないということが分かりました。 分析時間は適切? 業務を進める際、初めはデータ分析から始めることが多い中、分析に時間をかけすぎる傾向があると感じています。一定量のデータが得られた段階で、迅速に仮説を設定し、追加の分析が必要かどうかを判断するか、実行フェーズに移行するかを見極めることが重要だと学びました。 行動開始のタイミングは? このコースを通じて、仮説に基づき行動に移すタイミングの大切さを再認識しました。今後は、データ分析に没頭しすぎず、適宜ストップしながら、仮説思考を軸にした実践的なアプローチを心がけたいと思います。

データ・アナリティクス入門

数字が語る成長ストーリー

どの指標で問題解決? 顧客の行動をクリック率やコンバージョン率などの定量的指標で捉えることで、どのステップに主な問題があるかを把握できる点が非常に参考になりました。このアプローチにより、各プロセスのボトルネックを明確にし、改善点を正確に捉えることが可能となります。 点数化と離脱はどう? また、各項目を点数化して意思決定を行う方法は大変勉強になりました。各指標にはそれぞれ長所と短所があるものの、複合的に判断することで、優先事項の認識を合わせ、定量的な基準を共有できると感じました。さらに、顧客がどのステップで離脱しているのかをファネルの視点から整理する手法は、成果に結び付けるための具体的なアクションプランを立てる上で非常に有用であり、今後の分析や社内での課題解決の手法として周知したいと考えています。

データ・アナリティクス入門

整理の魔法!ロジックツリー術

全体像はどう把握? ロジックツリーを用いることで、全体を俯瞰して物事を捉え、抜け漏れなく整理する手法を学びました。同時に、細かく分割する過程で目的そのものに偏らず、重要な要素を見逃さないバランス感覚の大切さも実感しました。 学びをどう応用する? これらの学びは、データ移行のプランニング時のプロセス分割や、データ分析において対象項目の洗い出しと重要度付け、プロジェクト体制の整理、また予算計画時の項目洗い出しなど、業務のさまざまな場面で応用できると考えています。 具体策はどう実行? 具体的な行動としては、まずスコープを決定する際にチェックツールを活用して抜け漏れがないかを確認し、プロセス整理の際にはロジックツリーを使って複雑な要素を分かりやすく簡素化する取り組みを行っていきたいと思います。

データ・アナリティクス入門

振り返りで開く未来への扉

データ分析の意義は? データ分析のプロセスや考え方の重要性を改めて理解することができました。自分が何を目指し、そのために何を把握し、どのように行動すべきかという点を再考するきっかけとなりました。 フレームワークはどう? 今後は、学んだフレームワークや考え方をビジネスの現場で積極的に活用していく必要があると感じています。以前業務で行ったデータ分析を、今回習得した知識をもとに再挑戦し、実践を通して理解を深めたいと思います。 知識を共有する? また、自分の理解度を確かめるためにも、学んだ内容を他のメンバーに伝えることが重要だと考えています。まずは、自身が学んだことを共有する場を設け、さらに他のメンバーもスキルアップできるよう、実践の機会を増やしていくつもりです。

戦略思考入門

日常に輝く戦略的な一歩

戦略と自己分析のポイントは? 戦略的思考は、日常生活の中に当たり前に存在するものだと実感しました。これまで「とっつきにくい」と感じていた部分が解消され、明確なゴールを設定し、限られたリソースの中で最速かつ最短の方法で目的に向かうための行動計画が重要だと理解できました。その過程で、自分の強みや他人との違い、つまり独自性を常に意識することの大切さも学びました。 実践計画はどう組み立てる? 新規受注を獲得するためのアクションプランを策定する際は、まず自社の優位性や他社との差異を考慮した情報収集から始めました。得られた情報をもとに仮説を立て、実施すべき項目の取捨選択を行いました。これにより、不要な手戻りを最小限に抑え、効率よく迅速な成果に結びつけることを目指しました。

戦略思考入門

分析で実践!連携が拓く未来

フレームワークでどう活かす? 幅広い視点で物事を捉えるため、3C分析、PEST分析、SWOT分析、バリューチューン分析といった各種フレームワークの活用が非常に有効であると学びました。一方で、その知識を実際の行動に結びつけるには、個人だけで完結するのは難しく、他部署との連携が不可欠だと感じています。 製品変革の提案は? また、世の中の変化に伴い、自社の製品群にも変革の兆しが見え始めています。これに合わせて、設備を含む全体の造りや自社の立ち位置を整理し、提案する必要があると考えています。こうした状況下で、他社の取り組みや業界全体の情報を整理し、今後の製品群にふさわしい最適な造りを提案していく意義を改めて実感しました。

リーダーシップ・キャリアビジョン入門

気づきを引き出す3ステップ

原因はどこにある? モチベーションが低い人の原因を見極める際、マズローの5段階欲求やハーズバーグの動機づけ・衛生要因のフレームワークが有効です。これらの理論を用いることで、どのレベルに問題があるのかを具体的に整理できます。 面談で何が見つかる? 個別面談では、フィードバックの質問を3ステップで行うと効果的です。まず、実際に起こった出来事や状況を確認し、次に自分自身の考えや行動について振り返ります。そして、そこから得た気づきや教訓をもとに、今後の対応策について決める場とします。事前にこれらのフレームワークを活用して職員の要因を分析することで、面談時の目標設定や振り返りがより具体的かつ実践的なものとなります。

戦略思考入門

戦略で未来への一歩

戦略的思考とは? 戦略的思考の重要性に気づくことができました。普段の身近な事柄にも戦略的な視点で考えることで、短期的な目標から中長期的なビジョンに至るまで、常に目的を意識した行動が求められると実感しました。同時に、より高い視点で物事を捉える必要性も改めて感じる結果となりました。 新部署でどう進む? 現在、新しく配属された部署では、まだ作業的な業務が中心ですが、今後はフレームワークの活用や事業計画、予算策定といった活動にも視野を広げ、より高い視座で取り組む意向です。分析を深めるとともに、多角的な視野を持って業務にあたることを目指しています。

データ・アナリティクス入門

仮説で切り拓く未来への道

仮説で何が変わる? 問題解決の第一歩として、仮説を立てる方法を学びました。仮説にデータ分析の視点を加えると、その説得力や信頼性が一層増すことを実感しています。また、仮説を立案することにより、自分の行動の筋道が明確になり、周囲への説明もしやすくなります。 3Cや4Pの意味は? 仮説の立て方については、特に3Cや4Pといったフレームワークを活用し、複数の仮説を網羅的に考えることの重要性を学びました。決め打ちにせず、幅広い視野で仮説を検討することで、日々の小さな問題にも柔軟に対処でき、周りを巻き込んだ改善活動にも効果的に取り組めると感じています。

「分析 × 行動」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right