データ・アナリティクス入門

データを読む力で広がる新視点

数字の壁は本当? データ分析に関して、「数字が得意でないとできない」という思い込みがありましたが、実際にはデータの読解力が重要だと感じました。データと情報を比較することで状況を把握しやすくしたり、意思決定をしやすくする手法の一つとして、どのような目的や仮説で分析を行うのかが最も重要な根幹部分であることに気づきました。 旅行動向はどう? 具体的な例として、訪日旅行観光客の市場動向と顧客行動の把握があります。どの国からの訪日観光客が増えているか、減っているか、滞在日数、1人当たりの消費額、訪問都市やその数、そして訪日旅行に求めていることや課題について分析しました。 立ち位置はどう評価? 会社が策定している中期経営計画の目標達成のためには、訪日旅行という分野において、自社が業界内でどのような立ち位置や状態になるべきかを明確にする必要があります。そして、その状態を達成するために必要となる情報やデータを考慮し、どのような戦略を打ち出すべきなのかについて検討することが求められます。

リーダーシップ・キャリアビジョン入門

環境を味方にするリーダー術

リーダーシップを発揮するには? リーダーシップを最大限に発揮するためには、環境要因と適合要因をしっかりと見極め、それに合わせた適切な対応を取ることが重要であると理解しました。これまでの自分の行動を振り返ると、そこまで繊細に考えて行動することがあまりなかったと感じます。 事業部長としての挑戦 現在、私は事業部長として会社の方針を実際のビジネスに具体的に実現するための企画を担当しています。日々の業務では多くの判断が求められる場面が存在します。そのためには、部下や他部門に対しても環境要因と適合要因をしっかりと見極め、チームおよび会社の方向性を一致させながら、事業の成果を最大化したいと考えています。 判断の精度を上げるには? そのためにまず、すべての案件に対して環境要因と適合要因を分析し、その分析をもとに判断を行っていきます。また、判断の精度を向上させるために、いくつかの案件については部下や同僚に判断に至った分析を説明し、第三者的な意見を求めてPDCAサイクルを回していきます。

データ・アナリティクス入門

検証が導く次の一手

結果の背景は何? PDCAサイクルにおける「C(Check)」の重要性を改めて実感しました。業務では、A/Bテストの結果が出るとすぐに「採用」と「不採用」の判断に偏りがちですが、なぜその結果になったのかという背景や要因の検証が不足していると、本質的な成果や再現性のある改善につながりません。 結果だけで大丈夫? 自身の業務においても、施策実施後に結果だけを見て結論を出す傾向がありました。しかし、今後は仮説とのずれや背景要因を丁寧に分析し、再現性のある改善策を立てる必要性を感じています。 検証で進化できる? そこで、施策の実施後は必ず検証の時間を確保し、PDCAサイクルの「C(チェック)」を強化することを行動計画に盛り込みます。具体的には、仮説と結果の差異を可視化し、原因分析のためのデータを事前に収集・整理する仕組みを整え、定期的な振り返りの場で結果の背景を多角的に検証します。これにより、直感や思いつきに頼らず、根拠ある意思決定を進めていきたいと考えています。

データ・アナリティクス入門

仮説が照らす新たな一歩

結論と解決をどう見極める? 仮説には、論点に対する一時的な答えとしての「結論の仮説」と、具体的な問題解決を推進する「問題解決の仮説」があるという考え方があります。複数の切り口から仮説を立て、そこから焦点を絞っていくことで、決め打ちせず柔軟に検証を進めることができます。 仮説と検証はどう活かす? このアプローチにより、検証マインドや説得力、問題意識が自然と向上し、分析のスピードおよび行動の精度が高まると感じています。たとえば、営業活動の最適化を図る際には、既存のデータから読み取れる情報に加え、どのようなデータがあれば反論を排除できるかを考慮した仮説を設定し、必要なデータを収集することが重要です。 BI導入で何を学ぶ? また、BIツールを活用した経営ダッシュボードを作成する際は、単に事実を表示するだけでなく、社員が仮説を立て行動につなげられるよう設計する工夫が求められます。納得してもらえる仮説の立て方を学ぶことが、効果的な分析や営業活動の最適化に直結すると実感しています。

データ・アナリティクス入門

学びを動かす日常の工夫

A/Bテストの意義は? A/Bテストの存在を知ることができ、業界ではそのような視点があまりなかったと感じました。また、week5はこれまでの中で一番難しく感じました。グループワークでAIの活用を聞いていたので、実際に少し取り入れてみました。動画で指摘されていたように、日常生活の中でこうした思考や手法を実践することが、身につけるために重要だと痛感しました。 転職と時間管理は? プライベートでは、転職の検討や残業削減の工夫、高額な商品の購入を見据えた時間の使い方について考えています。例えば、まずはどの仕事にどれくらいの時間がかかっているかを計測することから始める予定です。 研修と目標達成は? 一方、業務面では、研修担当として対応できる研修の分類や不足している部分を調査し、人材育成モデルとの紐づけを行いながら、研修内容の過不足を確認しています。また、年間計画の検討や売上目標達成に向けた具体的な行動計画の作成、社内合宿のアンケート結果の分析にも取り組んでいます。

クリティカルシンキング入門

多角的視点で売上アップを実感!

問題解決のための分析方法は? 状況を正しく把握して行動を判断するためには、問題をより細かく分解し、複数の視点からデータを収集し整理することが重要であると学びました。データをまとめ、仮説を立てた後は、さらに新しいデータを集めてその仮説の真偽を再検討します。このプロセスを通じて、状況を正確に捉えることができると理解しました。 自店舗の分析をどう深める? 現在、各部門や各商品の販売数、実利益、前年対比、予算、目標設定を行っていますが、これを自店舗のみならず、エリア内の他店舗のトレンドや市場トレンドと照らし合わせています。これまでもこのような分析を無意識に行っていましたが、今回の学びを通じて、それが複数の視点による分解であったことに気付きました。 他店舗の成功事例をどう活用する? エリア内の他店舗にも連絡を取り、自店舗の特徴を聞き出しています。特定の部門や商品の売上が高い店舗の特徴や取り組みをヒアリングし、それを自店舗にフィードバックすることで売上向上を図っています。

データ・アナリティクス入門

データ分析で発見する成功のカギ

比較に意味があるのは? 分析は比較であることを理解しました。つまり、比較に意味がない数値を比べることは無意味だと感じました。 失敗例から学ぶ分析法 データ同士の要素を揃えることも重要だと考えます。これまで成功例をいくつか分析して共通の要素を探したことがありますが、振り返ってみると、失敗例でも同じ分析をして失敗しているケースが多々あったのではないかと思います。それは、本当の成功要因とは異なると思います。 成功要因の鍵は何か? 広告などのクリエイティブにおける結果の分析で、特に比較要素が多い動画クリエイティブでは、成功事例と失敗事例を踏まえて、本当にキーとなるポイントを発見することができれば、大きな成果につながると感じます。 具体的目標に向けて行動 3月末までに業務の特定の箇所を学んだデータ分析を用いて数値を改善させる目標を立てました。毎週の授業の中で、具体的に自分の業務をイメージしつつ、会社の中で自分がどう行動するかを考えながら学習に取り組んでいます。

データ・アナリティクス入門

数字が導く明日の解決策

問題箇所はどこ? 問題個所の特定は、次のアクションプランを考える上で非常に重要です。数値に基づいて問題箇所を洗い出し、優先順位を明確にすることで、納得のいくアクションプランを策定できます。また、数字に紐づく具体的な行動も同時に把握することで、プロセス全体の見直しの基準が整います。 課題解決はどう進む? 課題解決は、問題をプロセスに落とし込みながら進めることが求められます。What、Where、Why、Howといった基本の枠組みに沿って対応することで、業務改善の手法の一つとして、DX化推進の取り組みも効果的に実施できるのではないでしょうか。 目的設定はどう? 目的の設定においては、まず問題や課題を洗い出し、その中から複数ある項目に対して優先度を付け、分析と順位付けを徹底します。その上で、アクションプランを策定することが求められます。さらに、UI/UXに関わる場合はA/Bテストを取り入れ、スタンダードなフレームワークに沿った進め方を実施することが重要です。

データ・アナリティクス入門

数字で読み解く成長の軌跡

定量分析の鍵は? サンクコスト、定量分析、MECE、ロジックツリーという手法について学びました。定量分析では、データのどこに注目し、どこを比較するかが重要であることが分かりました。特に、①インパクト、②ギャップ、③トレンド、④バラつき、⑤パターンの各視点からデータの意味合いを読み取ることに注力しました。 MECEの意味は? また、MECEに関しては「もれなく、ダブリなく」に分けるだけでなく、意味のある切り分け方が重要であることを理解しました。この考え方を基に、現状と理想のギャップを明確にし、具体的な行動につながる方向性をメンバーに示すことが求められると感じました。 課題解決の道は? さらに、現状の課題として、分析結果の共有時にメンバー間で理解のずれが生じたり、行動に直結しない点が挙げられます。なぜこのような分析が必要なのか、そこから得るべきものは何か、そして課題の解決につながる具体的な実施方法について、今後さらに明確にしていく必要があると感じました。

データ・アナリティクス入門

MECEの呪縛から解放される方法

データ収集と分析の重要性は? 日頃からデータ収集、分析、仮説設定、実行サイクルのスピード感を大切にしていました。しかし、「MECEを意識し過ぎず、時間をかけすぎないこと」を講義で聞いて、今後の業務においてもこの点を意識し、実践していきたいと考えました。 効率的な仮説設定と実行方法は? 特に、MECEや分析そのものに過度な労力を費やすのではなく、分析結果を基にした仮説設定、そして何より迅速な解決策の実行と行動に焦点を当てたいと思います。このようにして得られた新たなデータの収集→分析→仮説設定→実行のサイクルをより早く回していくことに注力したいと考えています。 MECE活用術と業務への応用法は? さらに、MECEについては、大項目から小項目へとプロセスを意識して分析項目を洗い出す習慣を、明日から日々の業務の中で身につけていきたいと思います。また、分析にかける時間を事前に設定し、それをもとに効率的に進めていくことも、明日から実施していきたいと考えています。

クリティカルシンキング入門

データ分解で未来を切り拓く学び

データ分解のコツは? データを分析するときには、まず分解することの重要性を学びました。物事を分解する際には、次の三つのポイントが大切です。まずは手を動かすこと、機会的に分けないこと、そして複数の切り口で分けることです。また、MECEとは「もれなく、ダブりなく」切り分けられた状態を指します。分解の切り口には、層別分解、変数分解、プロセス分解があります。 売上数値の見方は? 自社製品の売上状況や他の薬剤の売上状況を記載した月毎のデータを用いることで、今後のアクションを検討する際に役立てたいと考えています。ただ単に数字の流れを追うのではなく、データを複数の切り口で分解することで課題を抽出します。 施設売上の課題は? 施設の売上状況を基に課題を探り、今後の行動を検討する際にこれを活用したいと考えています。従来の月毎の売上やシェアだけでなく、同種同効薬や関連薬剤のデータも収集し、季節別や医師の特徴(年齢や出身大学)、地域別などにデータを分解してみます。

マーケティング入門

視点を広げるマーケティング学習の魅力

ミクロとマクロは? 今週は、総まとめとしてライブ授業が行われました。授業を通じて、物事をマーケティング的な視点で捉える際には、個人の考えを反映したミクロな視点と、世の中の動きを反映したマクロ的な視点が必要であることを学びました。この学びを活かして、世の中のトレンドや動きに注目し、流行の背景を考えるといった基本的な行動を継続していきたいと思いました。 仕事にどう反映? 今後、仕事において顧客とのミーティングや社内でのやり取りの中で、積極的にマクロ的な視点を活かした発言ができれば、より高い視座を持って先を見据えた計画で仕事を進められると感じました。 企画力向上の秘訣は? また、今期中には新サービスの提案や企画力を強化するために、業界のトレンドを追い続け、注目のアプリやサービスを分析し、隔週で発表し合う取り組みを進めることになりました。この場でも、これまで学んできたポジショニングなどのフレームワークを活用していきたいと考えています。

「分析 × 行動」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right