戦略思考入門

未来を変える差別化のレシピ

ターゲットの見定め方は? 差別化の考え方について、まず「ターゲットとなる顧客を定めること」、「顧客の立場から競合を意識すること」、そして「実現可能で持続性のある施策を構築すること」が重要であると学びました。これまで自社の差別化のターゲットや、顧客にとっての競合がどこかを明確にしていなかったため、今後はこれらをはっきりさせることで取り組むべき課題を明確化し、具体的な行動に移していきたいと考えています。 VRIOをどう活かす? また、自社の強みを活かした差別化のために「VRIO」というフレームワークを学びました。この枠組みを活用して、顧客に意味があるか、真似されにくいか、組織全体で実行できるか、そして持続可能な差別化が可能かどうかを検証していくつもりです。 競合をどう分析する? これまでは、差別化を単に競合とは異なる商品やサービスを提供することと捉えていました。競合店の状況も戦略として十分に考慮できていなかったため、今後はフレームワークを用いて、社会情勢、業界・競合の動向、市場や顧客のニーズ、さらには自社の強み・弱みを総合的に分析し、競合の施策に対してどのような意味があるのかを多角的な視点で検討していきます。 広い視野で戦略は? さらに、マーケティングリサーチを単に競合の施策を把握するためだけでなく、社会情勢、業界全体、市場や顧客の動向を幅広く捉える手段として活用し、自社が取るべき戦略の検討に結びつけていく重要性を実感しました。今後はこうした広い視野で自社と競合の施策を理解し、より効果的な戦略立案に努めていきたいと思います。

データ・アナリティクス入門

問題解決力を育むプロセスの魅力

原因の見極めは? 問題を解決する方法の一つとして、プロセスを分解して原因を明らかにするアプローチがあります。また、解決策を検討する際には、複数の選択肢を洗い出し、根拠に基づいて選定することが大切です。この際には、判断基準の重要度に基づき重み付けを行い、解決策を評価して選択します。 データで何が分かる? データを分析しながら問題解決の精度を高めるためには、ステップを踏んで行う方法や仮説を試してデータを収集し、改善につなげる方法があります。これらのアプローチを組み合わせることで、データ分析をより高度に行うことが可能です。 業務の見直しは? 現在、マーケティング関連の業務をしていなくても、特定の目標を達成するために、行動や業務フローを時系列や工程ごとに分解し、問題点やボトルネックを洗い出すことができます。これらの問題が実際にボトルネックとなっているかは、日々の業務を通じて確認、検証、改善を重ねることが必要です。このプロセスを通じて、実際に成果に結びつく行動を特定することが重要です。データ分析が可能となるよう、数値化された目標や行動(KPI)が設定されていることが重要な前提です。 残業改善のヒントは? 例えば、チームが抱える課題として残業時間の多さがあるとします。この場合、目標を「各スタッフの残業時間を月10時間以内に抑える」と設定し、各スタッフの業務工程を洗い出し、それぞれの業務にどれくらいの時間がかかっているかを分析します。そこから、効率化またはアウトソーシング可能な箇所を特定し、実際に実践することが望ましいです。

データ・アナリティクス入門

ファネル分析で見える改善の鍵

ファネル分析はどう? 問題の原因を明確にするためには、取り組みを各プロセスに分解し、それぞれのプロセスを確認することが有効です。特にファネル分析は、ユーザーの利用段階を「注目」「興味」「欲求」「行動」などのプロセスに分け、どの段階でユーザーが離脱しているかを可視化する手法です。ファネル分析には、ファネルそのもの、横棒グラフ、プロセス×ウォーターフォールなどのチャートがあります。この分析を行う際のコツとしては、顧客の行動プロセスを適切に設定し、「実数」と「比率」のバランスを重視することが挙げられます。原因を一つに特定しすぎず、ある程度方向性が決まれば仮説に基づいてABテストなどで検証し、必要があれば仮説を修正していくことも重要です。 募集プロセスはどう? 生徒募集活動においては、「学校の存在を知る」「学校に興味を持つ」「学校説明会・個別相談会を申し込む」「実際に参加する」「出願する」「入学する」というプロセスを通じてファネル分析を行います。それぞれのプロセスでの人数の実数と比率をチャートとしてまとめ、問題があり優先して取り組むべきプロセスを特定します。 事例調査はどう? 具体的な取り組みとしては、まずファネル分析事例を検索して、できるだけ多くの事例、特に学校法人の事例を調査します。そして、入試広報部から昨年度の生徒募集活動の各プロセスのデータを入手し、ファネル分析を行います。その際は、実数と比率の両方でチャートを作成します。最終的に、分析結果を入試広報部と共有し、問題のあるプロセスについて共通認識を持ち、改善策の検討を進めます。

クリティカルシンキング入門

平易な言葉で伝えるクリティカルシンキングの力

クリティカルシンキングで学んだことは? クリティカルシンキングの学びで特に印象に残ったのは、平易な言葉で相手に伝える重要性です。立場が違えば、物事の見方や考え方も変わることをケースを通して学びました。私は物事を簡潔に伝えるのが苦手です。その理由を考えたとき、①課題の整理ができていない、②抽象的な言葉のほうが自分にとって伝えやすいという癖があるため、自分の範囲内で考えて専門用語や抽象的な表現を多用してしまうのだと気づきました。 今後どのようにコミュニケーション力を高める? これからは広い視点で分析を行い、誰にでもわかりやすいコミュニケーションを意識していきたいです。上司への提案や業務分析など、思考が必要な場面では大いに活用できると感じました。AIの進歩により、疑問に対する答えは簡単に見つかりますが、条件設定などでの役割はまだ人間の手が必要です。多角的な視点で分析できることで、今まで一つの答えしか考えていなかった現状を変えていきたいと思います。 さらに、簡潔でわかりやすい伝え方を意識し、提案やコミュニケーションをスムーズにしていきたいです。そのために次のことを意識して行動したいと思います。①図で示す、②定量的に示す、③専門用語を使わない、④様々なケースを考える、⑤結論から伝える。 自分自身のどのようにアップデートする? これらの意識をもとに行動し、自分自身をアップデートしていく必要があると考えています。ただクリティカルシンキングだけでなく、MBAの基本的な知識や他業種の情報も積極的に取り入れ、多角的な視点を身につけていきます。

戦略思考入門

戦略の視点拡大で見える新たな道

広い視点で戦略を考えるには? 戦略を考える際には、自分の得意な視点に偏らないように、広い視点で考えることが重要です。特に、戦略を深く考えるためには、フレームワークを活用することが有効です。ただし、PEST、3C、SWOTの使い方の違いについてはまだ完全に理解が及んでいない部分があります。 フレームワークの活用事例は? フレームワークを理解する一環として、これまで担当してきた社内サステナビリティコミュニケーションのケースを考えてみます。SWOT分析では、OT(PEST分析)を行った後に、3C分析を活用しました。この取り組みの目的は、従業員のサステナビリティに対する理解を促進し、行動を変容させることです。 SWOT分析の結果、以下の点が明らかになりました。 - S: 研修やeラーニングが実施されており、従業員の理解度は概ね高い。 - W: しかし、これらは研修やeラーニングの手段に留まっており、従業員の半数に情報が行き渡らず、行動変容には繋がっていません。また、SDGsの認知度も低い状況です。 - O: 推測としては、オウンドメディアの活用が増加し、さらに共創活動が加速する可能性があります。 - T: 同時に、心理的安全性の高い企業が増えることが脅威として考えられます。 チームでの戦略策定の重要性 実際の業務においては、より具体的かつ深い分析が必要です。一人の視点に頼るのではなく、チームの視点や意見を積極的に取り入れ、妥当な戦略を策定していくことが大切だと考えています。行動として、戦略策定を4月より開始しています。

デザイン思考入門

実践で感じたユーザー視点の魅力

アイデアの出し方は? ブレインストーミングを用いて短時間で多くのアイデアを出し、KJ法で整理して優先順位を明確にすることで、ユーザー体験の視点から課題にアプローチできると感じました。さらに、シナリオ法を使いユーザーの行動や感情を深く分析することで、課題解決の糸口が具体的に見えてきました。ペーパープロトタイピングを活用し早期にフィードバックを得ることや、バリューポジションを明確にして独自の価値を伝える手法、そして競合調査を通じてターゲットのニーズに合った方針を策定することが、ユーザーに寄り添ったWebサイトやサービスの提供につながると考えています。 チーム作業の効果は? 実践からは、ブレインストーミングをチームで行うことで個人では引き出せない多様なアイデアが見えてくることを実感しました。また、シナリオ法によりユーザー視点での課題が明確になり、解決策が具体的になった点も大きな気づきでした。これらの手法を組み合わせることで、より効果的なサービス作りが可能になると感じ、今後の実践に活かしていきたいと思います。 学びをどう活かす? 今日の学びでは、アイデア出しや製品コンセプト策定に関する重要なアプローチを学び、実践にどう反映させるかを考える良い機会となりました。ブレインストーミングやKJ法で個人では気づきにくい視点をチームで整理し、シナリオ法を通じてユーザーの想いや行動を深く理解することが、ユーザー中心のサービス作りに直結すると再認識しました。これらの知見を自分の業務に取り入れ、具体的な改善策を模索していく意欲が湧いています。

デザイン思考入門

仮説で解く!みんなの業務課題

なぜ業務量に差が生じた? 現在の業務は減少せず、同じ部署内で担当する業務量に大きな差があるという課題を感じています。この状況について、なぜそのような事態になっているのかを定性分析を用いて仮説を立て、解決に向かわせる方法を考えました。インタビューなどを通じ、単なる業務量だけでなく、その背後にある問題点を明らかにする必要があると考えています。 アンケートから何が分かる? 今回の演習で気づいたのは、アンケートの結果から、経験や年代にかかわらず共通の課題が存在することが分かった点です。この結果は、データをコーディングすることで抽出されたものです。しかし、実際に対処するデータは今回のものよりも複雑で量も多くなるため、分析の難易度は大幅に上がると感じました。また、課題設定において、単に現状の課題を把握するだけでなく、その課題があることによってユーザーがどのような回避行動をとるのかという視点を加えるという新たな発想も得られました。回避行動も一つの課題として捉え、解決策を検討することが求められると学びました。 定性分析で何が見えた? さらに、分析手法として定量分析と定性分析が存在し、特に仮説の構築が重要であることを再認識しました。定性分析は仮説構築に大いに役立つという新たな気づきも得られました。分析結果から浮かび上がった問題について、もし解決が進まなかった場合の条件を設定し、さらに課題を掘り下げる手法も有効であると感じました。なお、解決策を前提にして課題を定義しないという点についても、常に意識して取り組む必要があると理解しました。

マーケティング入門

イノベーション普及の鍵を掴む学び

イノベーションの普及要件とは? これまで、顧客視点で魅力を追求する重要性を学んできましたが、物が売れるためにはイノベーションの普及要件も重要であることが印象的でした。 イノベーションの普及要件には以下の五つがあります。まず、比較優位性とは従来のアイデアや技術と比較した際の優位性を指します。次に、適合性は生活に大きな変化を強いるものは採用されにくいことを意味します。さらに、わかりやすさは使い手にとって理解しやすく、使いやすいことが重要です。また、試用可能性は実験的な使用が可能であることを意味し、可視性は新しいアイデアや技術を採用していることが周囲から観察されやすいことを指します。 マーケット分析での注意点は? マーケットを年齢や性別のみで捉えるのは危険です。心理的変数や行動変数、成長性、そして競合商品も考慮する必要があります。 提案書改善のために何を意識する? 自社のサービスはBtoBであるため、すべての要件が当てはまるわけではありませんが、比較優位性やわかりやすさ、可視性を意識した見せ方をすることで、提案書の改善が期待できると思います。現在作成中の提案書について、これらの普及要件に当てはめられるか、チームで話し合いたいと思います。 学んだことをどう活用する? 先週、セグメンテーションやポジショニングマップの説明をチームで行い、イノベーションの普及要件についての学びを共有しました。新規案件の提案書作成において、この学びを活用し、提案書のブラッシュアップができるよう、チームでミーティングを行いました。

データ・アナリティクス入門

振り返りに潜む学びのエッセンス

フレームワークはどう活かす? 3Cや4Pなどのフレームワークを活用して、問題を細分化することで仮説を立てやすくなります。検討事項を分解することで、具体的かつ論理的な課題設定が可能になり、全体像が明確になります。 データ分析は何故重要? 既存のデータと新たに収集するデータを組み合わせ、多角的に分析を進めることが重要です。手持ちのデータをどのような視点で再分析するか工夫するとともに、公開されている一般データも活用して、消費者の行動傾向などの研究に取り組むと良いでしょう。さらに、必要な詳細データを得るために、広範な集団の傾向を把握できるアンケートや、特定の対象に対して深掘りするインタビューといった方法を、ケースバイケースで使い分けることで、既存データを補完し、分析の精度を高めることができます。 仮説はどう検証する? 仮説を立てる際には、複数の仮説を同時に設定し、それぞれの網羅性を持たせることが大切です。何気なく仮説を設定するのではなく、比較の指標や対象を明確にし、具体的な意図を持って検討することで、説得力のある仮説が構築できるでしょう。 なぜ仮説策定する? 仮説を策定する理由としては、検討マインドや説得力の向上、関心および問題意識の深化、意思決定のスピードアップ、そして行動の精度向上が挙げられます。普段の業務でも仮説構築は行われていますが、フレームワークを意識し、何を比較すべきか、対象は誰か、どのように情報を収集するかを十分に検討することで、より総合的で優れたデータ分析体制を整えることができます。

データ・アナリティクス入門

仮説×多角視点で見つけた新発見

仮説の組み立て方は? 仮説を立てる際には、【What/Where/Why/How】の各視点を用いると整理しやすくなります。具体的には、①問題は何か、②問題が発生している場所、③なぜ発生しているのか、④その解決策というステップで進めます。もし手掛かりが得られない場合は、【3C】や【4P】といったフレームワークも有効です。大切なのは、仮説の正確性よりも複数の異なる視点からの検証ができるかどうかであり、全体を満遍なくカバーする形で複数の仮説を立てることが望ましいです。その上で、データ収集や検証を行い、どこに問題が存在するのか、そして適切な解決策は何かを探ります。 お客様行動の理由は? 顧客の行動分析において、この方法が非常に役立ちそうだと感じました。普段からお客様の行動についてはある程度の傾向を把握しているものの、なぜそのような行動に至るのかという原因まで深堀りできていなかったため、今回の仮説設定と検証を通じて明らかにしたいと思います。また、これまでなかった【3C】や【4P】の視点を取り入れることで新たな気づきも得られると期待しています。 データ収集の方法は? まずは、自社が所有しているデータを収集するところから始める必要があります。現状のデータだけでは不足している可能性があるため、必要なデータをどのように取得するかを検討し、取得にかかる費用と解決したい問題とのバランスも考慮したいと考えています。加えて、仮説を立てることでスタッフ全員が同じ視点に立ち、各自の気づきを共有できる環境を作りたいと思います。

マーケティング入門

多角視点で開く学びの扉

マーケはどう捉える? マーケティングの定義は人それぞれの捉え方があり、どの考え方も広い意味でのマーケティングに含まれることを学びました。思考や仕組み、プロセス全体が一体となっているということを再認識し、異なる視点が必ずしも間違いではないという気づきも得ました。自分の商品だけでなく、顧客にその魅力を伝えるサイクルを確立し、最終的に顧客に選ばれる重要性を強く感じました。自分自身、もっと執念深く取り組む必要があると実感しています。 ブランドはなぜ必要? 現在の業務は技術を起点としたプロダクトづくりが中心ですが、顧客にそのプロダクトの魅力をしっかりと伝えるためには、ブランドづくりが不可欠だと考えています。魅力を感じてもらえるターゲットが存在するのか、販売の仕組みが適切かどうかを継続的に分析していくことが必要です。常に自分の考えが正しいか、適切かを問い直す姿勢が求められており、顧客のニーズに合致するかを判断するためのマーケティング的視点の習得と活用が今後の課題だと感じています。 顧客理解はどう進む? まずは、顧客が本当に求めるものを理解し、顧客の思考や行動を分析することから始めたいと考えています。コアファンの探索を通じて、その行動原理や商品の用途を再確認し、ユーザーストーリーマップを作成する予定です。また、顧客インタビューに際しては、対象者にブレがないか、質問内容が適切かどうかを十分に検討した上で実施します。仮説検証の際にも、一方的な判断に偏らないよう論点を整理し、ビジネスの勝ち筋を見出す努力を続けたいと思います。

データ・アナリティクス入門

データ分析で未来を切り拓く!

初期の分析結果は? 物販店の2割削減商品の仮説では、以下のような視点で分析を行いました。まず、データの重心は平均によって決定し、前年同月との販売比較を行いました。また、客単価や平均購入数、近隣店舗との売り上げ比較、顧客のインバウンド需要が変動した理由として、為替レートや可処分所得の変化にも注目しました。これに加え、アンケート施策も取り入れることで、順序立てて考えられるようになりました。 未知領域はどう? 次に、分析がまだ行われていない未知の領域を探るため、仮説を立てる必要があります。KPI以外のデータも分析の対象とすることで、現状を打破することを目指しています。そのために、データ分析手法に行動経済学や神経経済学の視点を取り入れ、心理的なデータ選択を通じて新しいデータ取得方法を確立したいと思います。最終的には、消費者の満足度や不満足度の要因を数値化し、顧客視点を重視した満足度向上に努めたいと思います。また、大量のデータを扱うため、ビッグデータ解析にも挑戦する予定です。 実務活用の振り返りは? 行動計画としては、本研修で学んだデータ分析や問題解決、仮説思考を実務でも活用していきます。これらのスキルは、データ以外の業務にも応用できると確信しています。研修で実施したことと実務での分析結果を2ヵ月間比較し、自分なりにレビューを重ねて、どれだけ浸透したかを振り返ります。また、ストレッチ領域として、ビッグデータに触れ前処理に苦労すると思いますが、実際に手を動かして経験を積んでいくことから始めていきます。

「分析 × 行動」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right