データ・アナリティクス入門

実体験から学ぶ問題解決の秘訣

理想と現実の違いは? ありたい姿と現状のギャップを整理し、問題点を明確にすることが非常に大切だと感じました。キャリアに関するレクチャーではよく耳にする言葉でしたが、実際には問題解決の着手点としてその意義を強く実感しました。講義の中には「目についた問題に手をつけるのは運であり、経験がある場合のみ解決可能なケースもある」という話があり、新たな場面ではこの教えが実際に有効であると感じました。 MECE実践はうまくいく? また、MECEの「漏れなく、ダブりなく」物事を切り分ける考え方ですが、頭では理解していても、実際に実践する際はその徹底が難しいと感じました。紙に書き出すなど、訓練を重ねることでスキルとして定着させる必要があると実感しています。 根本原因の探し方は? さらに、分析に留まらず、隠れている真因を特定するという視点が問題解決の前提として重要であることを認識しました。目の前のトラブルや課題に対して、対症療法や思いつきに頼るのではなく、根本原因を追求して解決を導く行動指針として、この講座の内容を日常業務に取り入れたいと思います。 庫内整理の対策は? 具体例として、庫内在庫の整理においては、庫内が満杯になり在庫の格納が難しくなった場合、調達部門に入荷抑制を依頼する必要があります。その際、MECEの考えを活用し、商品の特徴に応じて分類することで、どの商品が庫内を圧迫しているのかを特定することが求められます。 作業エラーの真因は? また、作業エラー、特に誤出庫の原因を特定する場合も、作業員が実施している一連の作業を漏れなく、ダブりなく羅列し、原因を明らかにする手法が必要であると学びました。

戦略思考入門

ビジネスの本質を掘り下げ、実践する方法

体系的に理解できた? ビジネスの場では、単なる感覚に頼らずに、仕組みを体系的に理解し、その本質を見抜くことが重要です。このための考え方の要諦を学ぶことができました。 選択はなぜ必要? 特に重要だと感じた点は、選択の必要性です。顧客にとってのメリットを考えると、一部を捨てる選択も重要です。また、差別化についても学びました。差別化とは何か具体的な違いを顧客に訴え、選んでもらうことだと理解しました。さらに、規模の経済性が競争優位性に繋がるかどうかもしっかり検討する必要があります。特に、安易な多角化には注意が必要です。 現状把握できてる? 私の部署では、業務の効率化と高品質化が命題です。ただなんとなく業務を進めるのではなく、明確にゴールを設定し、現状を把握する「足元分析」を行い、常に自分の道程を自問する姿勢を持ち続けたいと思います。 行動はどう活かす? 学んだことを実際の行動に活かすために、「手を動かす」こととして、学んだフレームワークを手近な事例に当てはめて考えていきたいです。「口を動かす」こととしては、仲間と意見を共有し、発信することで知識を深めます。そして、「頭を動かす」こととしては、捨てるべきものや、そこに至った思考の過程を再確認し、自分の業務に活かせるかを考え続けます。 振り返りは継続する? これらの活動は講座が始まってから取り組んでいるもので、今後も続けていきます。具体的には、毎週何かしらのフレームワーク、例えばSWOT分析やPESTEL分析を学び、実際のケースで練習します。さらに、定期的に振り返りを行い、ノートに「今週学んだこと」や「改善すべき点」を記録し続けます。

リーダーシップ・キャリアビジョン入門

自分再発見!キャリア再設計の一歩

自分の価値観は? キャリア・アンカーとは、仕事を進める上で自分が最も大切にしている価値観や欲求、動機、能力などを認識するセルフイメージだと理解しました。GaiLを通じて、私自身のキャリア・アンカーは「奉仕・社会貢献」、「純粋な挑戦」、そして「起業家的創造性」であるという認識が深まりました。これにより、今の自分と理想的なキャリアとのギャップを明確にし、どのように前進すべきか具体的にイメージすることができるようになりました。 キャリアの迷いは? しかし、理想のキャリアへ向かう道は一直線ではなく、時にはドリフト(サバイバル状態)を繰り返す現実を実感しました。そこで、節目ごとに自分のキャリア・アンカーを再確認し、今後の行動指針を見直すことが、モチベーションの維持や向上につながると感じています。 具体策はどう? また、キャリア・アンカーを実践するための具体的な4つのステップ―現職務の分析、将来計画の策定、周囲との対話、そして積極的なキャリア管理―について学びました。中でも、周囲の関係者や家族と話し合うことで、自分では気づかなかった視点を得られることが大きな収穫でした。これを機に、今後は積極的に周囲と意見交換を行い、キャリア形成の質を高めていきたいと思います。 職場でどう実現? さらに、学んだ内容を職場でも実践したいと考えています。チームミーティングの際には、キャリア・アンカーを題材に、メンバーと意見交換をしながら自律性やモチベーションの向上を図りたいです。そして、自身に対してもキャリアの棚卸しを行い、専任のキャリアコンサルタントと話し合いながら、具体的な将来計画を策定していく所存です。

マーケティング入門

考えが変わる!売れる理由の実感

実際の本質は? マーケティングを学ぶ前は、フレームワークや知識をたくさん習得することが全てだと思っていました。しかし、実際には、顧客に商品の良さを伝え、魅力を感じてもらい、行動の変容を促すことが本質だと理解しました。その結果、自分の知識不足を痛感するとともに、すぐにでも訓練を始めたいという意欲が湧きました。 売れた理由は? 特に、なぜある商品が売れたのかを徹底的に考えるワークは、新鮮な驚きでした。自分が既に知っている商品を題材に実践しながら、世の中で売れている他の商品にも興味・関心が広がりました。 どう売り込む? 作った商品をどのように売り込むかを考えることは、私の業務の一つです。今後は出発点を顧客や市場に置き、誰にどのように満足してもらえるかを何度も検討した上で、何を作り出すかを決定していく考えに変えていきたいと思います。 知識不足は補えた? また、世の中についての知識不足を補うため、マーケティング脳を鍛える切り口として、以下の3つの視点を実践しています。 興味の源は何? 1.自分が興味・関心を持つ分野で、売れている商品は何か、なぜ売れているのかを考える 同世代はどう? 2.自分と同世代や同業種など、共通点のある分野で、売れている商品は何か、なぜ売れているのかを探る 異分野の秘密は? 3.自分と直接の共通点が見られない分野で、売れている商品は何か、なぜ売れているのか分析する 意見はどう活かす? 各視点から、毎日最低1つずつ事例を挙げ、なぜ売れているのかについては身近な人にも意見を聞くことで多角的な視点を取り入れるよう努めています。

データ・アナリティクス入門

スピード重視の仮説検証で未来へ

数値と定性の評価はどれ? デザイン変更の方法案を、コスト、スピード、意思疎通などの各観点から数値で比較する手法は、とても効果的だと感じました。しかし、実際には数値化が難しい場面も多いため、例えば「大中小」や「◎〇△×」といった定性的な評価方法も有効だと思います。実際、イベントのプランニング月間である6月には、MECEに基づいて項目を洗い出し、これらの評価方法を用いて各案を総合的に比較したいと考えています。 A/Bテストの理解は進んでる? A/Bテストについては、これまで学んできた知識を活かし、解説通りの考え方で演習に取り組むことができました。その後の動画で、ポイントを絞って比較するという視点が紹介され、非常に納得のいく気づきを得ました。以前から社内ではA/Bテストの必要性は認識していたものの、コストを抑えながら迅速に実施する方法が見出せずにいました。今後、部内でのリサーチや議論を重ね、具体的な手法が確立できた際には、今回の学びを活かしていきたいと思います。 行動と分析のバランスは? 最も印象に残ったのは、原因の特定に時間をかけすぎず、実際に行動を起こし、仮説検証のサイクルを早期に回すという考え方でした。これまで、分析にもっと力を入れるべきだと考えていた自分が、ビジネスのスピードとのバランスを重視する必要性に気付かされました。もちろん、分析と実証の双方に適切な時間とエネルギーを割くことが重要だと感じています。具体的には、先輩社員の意見を聞いたり、必要に応じて外部の知見も取り入れながら、約半分の比率で分析を進める方法を模索し、明日から日々意識して取り組んでいきたいと考えています。

データ・アナリティクス入門

ビジネスの答えを導く仮説と検証のサイクル学習

仮説検証の重要性とは? 改めて仮説を立てること、そしてそれを検証することの重要性を学びました。ビジネスには正解がない場合が多いですが、その状況に応じた最適な答えを出す必要があります。そのためには、良い仮説を立て、データを収集し、それを素早く検証するサイクルを回すことが極めて重要です。このサイクルを通じて問題や施策を導き出すことを再認識しました。 フレームワークはどう活用すべき? また、仮説を立てる際にはフレームワークを活用すること、その仮説を検証するためには適切な指標を選び、収集したデータが反論を排除するための情報にまで踏み込めているかどうかを確認することも新たな気づきでした。これまでの経験を振り返ってみると、「仮説~検証」については何となく同じようなことをしてきましたが、仮説が網羅的でなかったり、検証が不十分だったりしました。今後は意識してこれを実行していきたいと思います。 未然防止に役立つ学びとは? 安全衛生活動(事故未然防止活動)にもこの学びを活用します。例えば、ヒヤリハットが年に1回発生している工場と全く発生していない工場では、現状は表面的な差異を見つけて、適当な仮説を立てて施策に結びつけようとしていました。しかし、これからはもっと網羅的に問題を分析し、適切な打ち手に繋げていきたいと思います。 ヒヤリハットの原因を追究するには? まず、そのヒヤリハットが「不安全行動」や「不安全状態」のどちらから発生しているのか、「4M」のどれに起因しているのかなど、問題の発生要素を網羅的に仮説立てします。それが本当にそうであるのか、データやヒヤリングを通して検証していきます。

クリティカルシンキング入門

データ分析の新たな視点を拓く学び

数字の見せ方はどう? グラフや比率などの数字の表示方法を変えることで、印象が異なり、最初の情報だけでは気づかない傾向や特徴を発見できることを学びました。グラフ化する際も、分類の仕方によって見えてくるものが変わります。まずはRaw Dataを確認して全体を把握し、その上で何を伝えたいのか整理して数字を整理する必要があると実感しました。 切り口は何で違う? また、数字の切り口によっては本質を見誤ることがあります。そのため、常に複数の切り口を持ち、一つの見方だけではなく、様々な切り口で数字を分析することが重要です。これまで経験に頼っていた切り口も、When、Who、Howを意識することで幅広く持てるようになると気づきました。 データの視点はどう? 私の仕事では日常的にデータに触れ、それを解釈しています。同じ現象の分析にも異なる視点を持つことを心がけています。具体的には、宿泊予約数の動向をデイリーのデータで見ていましたが、週次や月次で見るとどのような違いがあるのかを早速試してみたいと思います。また、他の切り口での分析も手間はかかりますが、視野を広げるために取り組んでいきたいです。 行動する意義は? 自分の思考の癖から抜け出すには、まず行動することが大切です。ひと手間、ふた手間加えて、複数の視点で分析することを心がけます。その際、これまでの分析結果や結論を再評価し、本当に正しいのか疑う姿勢を持ち続けたいです。また、MECE(漏れがなく、ダブリがない)の意識を持ち、ロジックツリーを活用していくことで、このフレームワークに対する苦手意識を克服していきたいと思います。

クリティカルシンキング入門

他者の視点で捉える本質の学び

客観的視点は重要? 自分で作成したデータでは、どうしても見落としてしまう視点がありますが、他者が作ったデータを参照することで、欠落している点に気づきやすいと実感しました。これは、自分自身の思考枠に囚われがちであるためと感じ、課題設定の段階から客観的な視点を持つことの重要性を学びました。 本質を問いかける理由は? 具体的には、MECE(漏れなく・ダブりなく)を意識して要素を分解し、書き出して可視化する作業を通じて、思考の抜けや偏りを減らすことが有効であると理解しました。今後は「なぜその分析を行うのか」「何を明らかにしたいのか」という問いを繰り返し立てることで、本質的な課題に近づけるように意識していきたいと考えています。 実務でどう活かす? また、今週学んだ「本質的な課題を捉える問いの立て方」は、日常業務、特にデータ分析や支援活動の現場で活かせると感じました。例えば、売上や廃棄データの分析において、単に「なぜ数字が下がったのか」という疑問に留まらず、「本当に解決すべき課題は何か」「改善に直結する要因はどこか」といった問いを立てることで、より効果的な対策を導くことが可能となると考えています。 提案に説得力はある? 具体的な行動としては、データ分析業務でMECEを活用して要因を分解し、課題を構造的に捉えること、そして提案活動では、相手の立場に立って本質的な課題を整理し、想定される反論や疑問を洗い出してから議論に臨む姿勢を大切にしていきます。問いの立て方をしっかり意識することで、思考の抜けや思い込みを減らし、説得力のある分析と提案につなげていきたいと思います。

戦略思考入門

ジレンマを乗り越える戦略のヒント

ジレンマの意味は? 「ジレンマを恐れない」という言葉が非常に印象に残っています。特に、短期的なリターンと長期的なリターンのどちらを選ぶべきかという考え方に陥りがちな自分を改めて認識しました。ジレンマを適切に恐れずに対処するためには、フレームワークを用いて全体を抜け漏れなく俯瞰して戦略を立てることが大切です。今回、3C分析、SWOT分析、バリューチェーン分析の概要を学びましたが、特に3C分析とSWOT分析は現在の業務に必要なフレームワークであり、実際に活用して理解を深めたいと思います。 どう戦略すべき? マーケティングやインサイドセールスの戦略を立てる際、短期から中長期的な視点でジレンマを感じ、立ち止まることが多いと気づきました。まずは、どのような場面でジレンマを感じるのかを言語化し、適切に対処していきたいと考えています。 戦略をどう描く? 現在、来期の戦略を作成している状況であり、3C分析やSWOT分析を通じて受注や失注の分析に偏らない広い視点でのターゲティングや行動計画を立てたいと思います。また、製品資料やランディングページを作成する際のターゲティングや表現についても活用できると考えています。 情報はどう整理? 3C分析やSWOT分析の概要は理解しましたが、どの粒度や範囲で情報を収集・列挙すべきかまだ明確ではありません。フレームワークを何度も使用し、来期の目標や計画を立てる際にまずアウトプットを作成し、それを通じてフレームワークの精度を高めていくことを目指します。フレームワークを利用する中で、どのような情報をどのように整理すべきかを模索していきたいです。

クリティカルシンキング入門

新しい視点でデータを活用するヒント

データ分析の新たな視点は? データの加工や分析など、日常業務で行うことが多かったが、今まで機械的に区分していたことに気づいた。例えば、10歳刻みで分けることはあっても、19歳〜22歳の大学生という区分で考えることはなかった。しかし、高校生・大学生・社会人という区分で行動が異なることから非常に納得できた。また、MECEを意識して複数の切り口で分解することを、すぐに実践に活かしたいと思った。 効果的なフィードバック法は? 研修や会議等の企画、運営を行う際には、事後アンケートを実施している。これまでのフィードバックは、コメントや全体の感想のみを基にしていたが、アンケート取得時には役職や年次などの詳細なデータも把握できる。これにより、MECEを意識した層別分解を活用することで、現状をより具体的に把握し、改善点としてフィードバックを行いたい。より良い研修や会議の運営を目指すためにも、この手法を取り入れたい。また、営業推進業務においてもデータの取り扱いが多いので、率算出やグラフ化などを行い、データから得られる情報をしっかりと把握することで、全国への営業推進に役立てたい。 目的を持ったアンケートの活用法は? 研修や会議の計画に際しては、分解を踏まえ、自分が把握したい点や次回以降の運営のために知りたい点を事前にしっかり考えることが重要だと感じた。その結果、目的を持った事後アンケートの設問を考えることができる。アンケート取得後には結果だけに頼らず、MECEを意識した分解によって多くの情報を把握し、それに基づいて現状を知り、今後の業務に活かすようなフィードバックを行いたいと思う。

戦略思考入門

全体を見据えた戦略の軌跡

戦略全体はどう見える? 経営戦略の全体像を学び、普遍な理念、中長期的なビジョン、そして具体的なアクションプランとしての戦略が存在することを理解しました。戦略は、部分最適を排除し全体最適を実現する有効な手段であり、優れた戦略を立てるためには中長期的な視点と、内外の環境を含む多方面の知識が必要であることを改めて感じました。 実践の足りてる? また、GAiLでの振り返りを通して、学びを身につけるためには実践が不足しているという点にも気付かされました。 全体視点は十分? 自社においては、経営理念やビジョンの確認を踏まえ、経営戦略を再認識する必要性を感じています。業務面では、食品卸の営業活動において、各カテゴリーごとに提案を行なっていますが、担当するカテゴリーだけでなく、他のカテゴリーも含めた全体を意識することが大切だと考えました。後から振り返るだけでなく、活動前に戦略的な考察を深める姿勢が求められています。カテゴリー横断での取りまとめが増える中、部分最適に陥らないよう、中長期的な視点を強く意識する必要があります。 具体的な行動計画としては、まず自社の「経営理念」と「ビジョン」の確認を5月中に実施し、その後、所属する業界のPEST分析や自社の3C分析、そして自分が担当するカテゴリーと取りまとめを行う他の3カテゴリーについての3C分析を6月内に行う予定です。また、朝の30分や通勤時間を利用し、学びの習慣を継続していきたいと考えています。現時点ではフレームワークをノートを見ながら使用しているため、まずは各分析を通じて経験を積み、知識を深めていきたいと思います。

データ・アナリティクス入門

仮説で拓く問題解決の未来

仮説の重要性は? 今回の学習で最も印象に残ったのは、「問題解決は仮説の立て方で8割が決まる」という考え方です。What〜Howの4ステップを通じて、まず問題を正しく定義することの重要性を実感しました。また、仮説は一つに固定せず、複数の切り口から検討することで思い込みを防げる点も大変参考になりました。データ収集においては、誰にどのように聞くかが分析の質を左右するため、都合の良いデータだけでなく反証のための情報も意識的に集める姿勢が必要だと学びました。今後は、3Cや4Pといったフレームワークを活用しながら、仮説思考をもとに論理的な問題解決に取り組んでいきたいと考えています。 業務での応用は? また、SIerの業務においては、今回学んだ考え方が「障害対応」、「業務改善提案」、「要件定義」の各場面で役立つと感じました。例えば障害対応では、現象に対する即時対応に加え、Whatで問題を整理し、Whereで影響範囲や発生箇所を特定、Whyで複数の原因仮説を立て、ログや関係者へのヒアリングを通じて検証を進めるやり方に変えることが求められます。業務改善においては、3Cや4Pを活用して顧客課題を構造的に捉え、直感ではなく仮説とデータに基づいた提案を行いたいと考えています。今後は、会議前に最低3つの仮説を用意し、データ収集の際にも反対意見の情報を集めるなど、具体的な行動レベルで実践していく予定です。 今後の展望は? 今後は、仮説をいつ確定させるかの判断基準や、少ないデータでの分析における工夫、さらにはフレームワークの使い分け方のコツについても、さらに深く検討していきたいと思います。
AIコーチング導線バナー

「分析 × 行動」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right