データ・アナリティクス入門

多角的視点で挑む学びの挑戦

プロセス分解って何? プロセスを分解するという観点を学びました。3Cや4Pのフレームワークを用いて、どの切り口で分析するかまでは考えることができたものの、その視点から仮説を立てる際に、設問の誘導がなければ行き詰まる可能性があると感じました。最終的には、4Pでプロモーション方法に着目し、3Cで顧客視点から行動パターンやプロセスを考えるという方法を組み合わせるアプローチを理解しました。 学びは販促にどう活かす? マーケティングの面では、従来の主要な事業である顧客設計品の生産・販売に加え、近年では新商品の市場投入が進んでいるため、学んだ考え方を販促活動に活用できると感じました。どの業界のどの顧客にどのようにアプローチし、望ましい結果を得るかを考える際に、今回の手法が大いに役立つと思います。 計画検証はどうすべき? また、投資検討の面でも、現状は確定した案件に基づいて投資判断がなされていますが、今後は未確定案件に対する投資検討にも学んだ手法を生かし、効果やリスクの検証を行っていけると考えています。さらに、担当者との定期的な打ち合わせで共有された活動計画について、計画が効果的に進んでいるか、もし計画通りに進んでいなければその原因や改善策を検討する際にも、今回学んだアプローチを活用していきたいと思います。

データ・アナリティクス入門

問題を見極める力が成長を促す

問題の本質は何か? 最初に重要なのは、「What(何が問題か)」をしっかりと見極めることです。具体的なデータを丁寧に集め、それを基に問題を特定することが肝心です。そして、問題を見つけた後は、その問題がなぜ起きているのか(Why)をよく考える必要があります。よくありがちなのは、「何が問題か(Where)」を見つけただけで、「どう解決するか(How)」に飛びついてしまい、WhatとWhyを飛ばしてしまうことです。これでは、解決策が不十分になることが多くなります。 直感に頼りすぎていない? このような経験から、私はしばしばWhatとWhyを深く考えず、直感に頼って行動しがちだと反省しています。たとえ直感的に問題や解決策が思い浮かぶとしても、しっかりと事実と原因を見極めた上で、効果的なHowを導き出すことを意識します。 データ収集と原因分析のステップ まずは、対象としている状況に関連するデータをしっかりと集め、実際にどこが理想的な姿と比べて差が大きいのかを検討します。次に、その問題の原因が何であるかや、その問題がどのような影響を及ぼすのかを考えます。原因を明確にし、その問題をどのように解決するかを考えることが重要です。このプロセスを日々の中で繰り返すことで、自分自身の考え方を確立していきます。

アカウンティング入門

半間比が明かす企業戦略の秘密

半間比の効果は? 今週の学習では、PL(損益計算書)の半間比の見方を通して、各店舗や企業がどのように価値を創造しているかを理解できた点が非常に印象的でした。具体的には、ある業態では高コストながら高単価を狙い、また別の業態では気軽さを武器に購買数を増やすという違いがあり、半間比を比較することで経営方針の違いが明確になりました。数字の背後にある戦略を読み取る視点を身につけられたことが、今回の大きな収穫です。 決算書の読み方は? この学びを自分の仕事に活かすためには、まず自社の決算書やPLを正確に読み解く力を養うことが重要だと感じました。さらに、競合他社の決算書や業績資料と比較することで、自社の強みや改善点がより明確になると考えます。また、新聞や経済誌に掲載されている企業の業績記事に接する際も、PLや半間比の視点を持つことで内容の理解が深まり、現実のビジネスへの洞察が広がると実感しました。 行動に移すには? 実際の行動に移すため、まずは日常的に新聞などの経済情報に触れ、気になる企業や話題に上がる企業について、試算表やPLなどの財務情報を毎週調べるようにしていきたいと思います。こうした継続的な情報収集と分析の習慣を通して、財務の見方や経営判断に必要な視点を少しずつ身につけていけると期待しています。

データ・アナリティクス入門

目的再確認で拓く未来

なぜ目的は大切? 分析とは、比較を通して物事を評価するプロセスです。まず、データ収集や具体的な分析を始める前に、はっきりとした目的を設定することが不可欠です。目的が定まらない分析は、結果として次の行動に結びつかず、単なる数字遊びになってしまうリスクがあります。 どのように対象を選ぶ? そのため、目的を明確にし、適切な対象を選ぶとともに、多角的な観点から正しく比較することが大切だと考えます。データ分析に入る前に一度立ち止まり、目的に立ち返る余裕を持つことが、成功への第一歩となります。 どのように傾向を見る? 具体的には、顧客の属性データやアンケート結果から傾向を読み取り、次月以降の施策に役立てています。また、自身の働き方に関しても、どの業務にどれほどの時間を費やしているかを他者と比較し、業務効率の向上を図っています。 どうやって振り返る? このため、毎週金曜日に10~15分間の業務棚卸しの時間を設け、週次および月次での振り返りを実施しています。さらに、1on1などの機会を通じて、業務時間の使い方について他者から意見を聴取し、比較することで、より実践的な改善策を模索しています。一方で、対顧客の分析に関しては、常に目的を再確認し、施策ありきの分析にならないよう注意を払っています。

データ・アナリティクス入門

分析で得た洞察を行動に変える方法

売上予測の計画をどう立てる? 売上予測においては、過去の事例や他社、海外の事例と比較しながら計画を立てることが重要です。実績が更新されるたびにその計画との比較を通じて事業の進捗を評価し、改善策を議論しています。このことから、「分析は比較なり」という定義はやはり真理だと感じています。また、扱うデータの理解を深め、その知見をステークホルダーと共有するためには、アウトプットの整理と見せ方を適切に選ぶ必要があります。 分析計画表はどのように工夫する? 分析を進める際には、毎回分析計画表を記載し、目的に合わせた分析手法を選択して言語化した上で作業を進めています。しかし、どのデータをどのように加工して用いるかにはあまり触れていないことが多いと感じました。そのため、テンプレートを見直し、自分以外の人がその分析の思考プロセスを理解しやすくするよう工夫が必要です。 新たなデータ分析のアプローチは? 具体的には、現在のテンプレートでは実際に分析に用いたものしか記載されておらず、選択可能なデータの種類とその選択理由、分析手法の採用理由を明確化するような構成に変更する予定です。新たなデータを分析する場合、そのデータの特性や限界を適切に確認し、分析結果とともに共有することが重要だと考えています。

データ・アナリティクス入門

目的を定め柔軟に切り拓く

なぜ仮説が必要なの? 分析においては、単にデータを整理して新しい気づきを提供するだけではなく、自分自身で仮説を立て、その仮説に基づいてどのような分析を行いたいか、また必要なデータは何かを考えることが重要だと学びました。以前は無意識に必要なデータを集めていたこともありましたが、目的を明確にすると分析のアプローチが大きく変わると感じます。同時に、立てた仮説に囚われることなく、他の可能性も公平に検討するスキルを身に付ける必要があると認識しました。 市場と売上の本質は? また、毎日の売上実績の確認は、単純に前年との比較やKPIの向上を狙うだけでなく、競合他社のマーケット動向や顧客へのアプローチについても視野を広げることが求められます。一社だけではなく、3Cの観点から広く分析することで、データが十分でなくても次の一手を打つための新たな視点が得られると考えています。 データ活用の秘訣は? 日々の実績やKPIのチェックに加えて、整理したデータをどう活用するか、チャレンジ精神を促す分析やその見せ方を意識することが必要です。競合の市場シェアデータなどを随時入手し、自分の活動が先月や過去と比べてどのように変化しているのかを具体的に確認できると、より実践的な行動変化にもつながると期待しています。

データ・アナリティクス入門

問題解決の4ステップで仕事が変わる

問題解決のステップを学ぶ 問題解決には4つのステップがあることを学びました。これらのステップは以下の通りです。 1. What:問題の明確化 2. Where:問題箇所の特定 3. Why:原因の分析 4. How:解決策の立案 このステップで仮説を立てて思考することで、以下の効果が期待できます。 1. 検証マインドの向上と、高まる説得力 2. 関心、問題意識の向上 3. 判断や行動のスピードアップ 4. 行動の精度向上 計算ミスをどう防ぐ? 例えば、給与や退職金の計算業務では、計算ミスが発生することがあります。その際にはまず、正しく再計算することが最優先されますが、今後同様のミスを防ぐためには原因を特定し、再発防止策を考え実施する必要があります。これを行うためには、問題解決の4つのステップが必須となります。 チームへの意識定着を図るには? 自分自身だけでなく、他のメンバーも問題解決の4つのステップを意識して思考できるように指導することが必要です。そのために、今回学んだ内容を毎週開催するチームミーティングで共有し、日々の業務の中でもメンバー一人ひとりがしっかり意識し自分のものにできているかを質問を投げかけることで確認し、チーム全体に定着させていくつもりです。

アカウンティング入門

売上を上げるカフェ経営の工夫と学び

​ コンセプト適正化の新視点とは? 大きく二点あります。一つ目は、コンセプトの軸をブラさずにコストの適正化をする際に、単に何かを減らすのではなく、売上を高める方法として単価を上げたり、店の席数を増やして長く滞在してもらう方向にシフトすることの重要性を感じました。例えば、駅前のカフェでは、再訪を促す仕組みとして、テイクアウトのカップに2次元コードを付けて、そのコードが電子クーポンになったり、何かのマンガの1話が無料で見られるようにするなどの工夫が考えられます。 P/Lから企業価値をどう読む? 二つ目は、P/L(損益計算書)を読むことで企業の価値観を見いだせる可能性があるということです。 ちょうど第1四半期の財務諸表が出てきたので、P/L部分を読んでみたいと思います。原価が上がっていることや販管費が下がっていることに関する会社のコメントも合わせて確認したいです。 具体的な行動案として、まず会社のIR情報ページから財務諸表をダウンロードすることから始めます。その後、P/L部分を読み、今日学んだ内容と照らし合わせながら分析してみます。現在のパイプラインを思い描きながら、今後どのような施策が必要か、マーケティング視点で何が求められるかを想像しつつ読み進めていきたいと思います。

クリティカルシンキング入門

問いで拓く実践と気づきの軌跡

問いで始まる学びは? 学習に取り組む際、なんとなく進めるのではなくまず「問」から始めることを忘れていた点を、今回改めて意識するようになりました。学んだ内容をその週に実践しようとしていましたが、忘れてしまい実践できないこともあったため、今後は学習と実践を繰り返すトレーニングでクリティカルシンキングをより確実に身につけていきたいと感じます。 何を議論すべき? また、会議で議題を上げる際は、何について議論したいのかという「問い」を明確にし、メンバー全員で共有した上で議論を進めることの重要性を再認識しました。調査や結果の分析においても、何について考えるべきかを事前に確認してから取り組む必要があると実感しました。分析結果の整理や報告では、グラフなどの視覚資料を活用して、より伝わる資料作りを心掛けています。 問いで進む未来は? さらに、これから行うことに対してもまず「問い」を考えてから行動するよう努め、学習した内容を再度振り返ることの大切さを実感しました。課題や提案をまとめた後には、クリティカルシンキングを思い返し自分の意見を疑うプロセスを取り入れ、作成した資料についても客観的に見直し、伝わりやすく分かりやすいかどうかを再検討する習慣をつけていきたいと思います。

戦略思考入門

学びの5週間で変わった視点と成長

情報整理はどう進む? 5週間にわたる学びを振り返ると、自分に足りないフレームワークを活用できるようになったことが、情報整理と環境理解に繋がったと実感しています。また、「捨てる」ことに対する後ろめたさを感じていましたが、実際には顧客に判断しやすさを提供することに繋がるという、新たな考え方に衝撃を受けました。さらに、差別化に関しては、単に他がやっていないことをするのではなく、模倣が難しく継続可能なものかを見極めることが重要だと再確認しました。 業務の本質は何か? 多くの新たな業務を引き継ぐにあたり、これまでの方法を単に踏襲するのではなく、なぜその業務をするのか、その本質を理解し、自分自身で一から考え直す姿勢を持ちたいと思います。この理解を深めるために、情報を整理・分析し、「この状況だからこそ必要だ」と周囲に納得してもらえる説明を心掛け、同じ目標に向かって業務を進めたいと考えています。 信頼関係はどう築く? 事業収益管理という業務の特性上、さまざまな部署と関係を築きながら業務を遂行する必要があります。関係構築においては、相手が納得できる話をすることが大切です。そして、その方法が効率的であるとお互いに認識し、実際の行動に結びつけられるように努めていきたいと思います。

データ・アナリティクス入門

データが拓くビジネスの未来

分析の本質とは? 分析とは、物事を分け整理することと、比較対象や基準を設けて比較することの両面が本質だと感じました。また、データ分析の目的や、どの項目をどのような形であたりをつけるのかという入り口の考え方も学べ、基本的な考え方がしっかりと理解できたと実感しています. 将来の分析戦略は? 今後は、顧客IDを活用して、CRM、Web行動、イベント、購買実績の時系列統合基盤を構築する力を高めるとともに、ビジネスゴールを離脱点や購買シグナルなどの具体的な分析課題に落とし込むスキルを向上させたいです。また、転換率やLTVなどのKPIを定義し、ダッシュボード上でリアルタイムに可視化しながら、閾値やアラートを設計する能力も伸ばしていく必要性を感じました. 実行計画はどう? 具体的な行動計画としては、まずCRM/MAの構造とAPIについて学び、ダッシュボードの運用や自動連携が自在に行えるレベルまで習熟することを目指します。次に、顧客ID基盤を活用してデータの抽出と整形を行い、分析用CSVを定期的に生成できる仕組みを構築します。さらに、RやPythonを用いた回帰分析やクラスタリングなどの手法を実施し、得られた示唆を速やかに施策へと反映できるサイクルを確立する方針です.

データ・アナリティクス入門

フレームで切り拓く実践PDCA術

仮説整理で何が見える? フレームワークを用いて仮説を整理することで、話がよりクリアになると再認識しました。3Cや4Pの視点から現状を見渡すと、どこに弱みがあるか、そしてどこをさらに掘り下げる必要があるかが明確になります。また、既に立てた仮説を裏付けるためだけでなく、客観的なデータの捉え方によって新たな仮説を構築する余裕も必要だという点が大変勉強になりました。 PDCA運用で何が変わる? 自社を取り巻く環境や4Pの側面から弱点を探し、仮説を立てた上で行動すること、そしてその行動にスピードを求めるという考えを再確認しました。PDCAサイクルを高速で回すためには、自分なりのロジックを持ち、行動の根拠をはっきりさせることが重要です。失敗した際には、何が原因であったのかを4Pや3Cの視点で分解し、再度計画を練り直すことが求められると感じました。 次の一手はどう考える? 今後は、週単位で顧客に対する活動内容を整理し、成功例と失敗例を振り返りながら、3Cや4Pの観点で要因を箇条書きにして分析していく予定です。そして、次に取るべき具体的なアクション、理想とするマーケットの姿、そして足りない部分を定量データと実行動作、競合の動向を意識しながら活動を続けていきたいと思います。

「分析 × 行動」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right