クリティカルシンキング入門

読み手を引き込む資料の秘密

資料の意図は何か? 読み手がメッセージに沿って情報を探しに行くという点について、改めてその通りだと感じました。普段あまり意識せずに目を通している資料も、実はそのように構成されていると気付き、またグラフの種類についても知らなかったことを痛感しました。 読みやすさはどう? また、文章作成のための動画では、同じ内容でもレイアウトや体裁によって読みやすさが大きく変わる点が印象的でした。私は文章が長くなりがちで、同じことをくどくどと繰り返してしまうことが多いので、この点は大変参考になりました。メール作成後は一度読み返すことの大切さを再認識しました。 スライドはどう伝える? さらに、普段はグラフやスライドを作成する機会がないものの、以前参加した研修では、所属部署の課題や自身の課題解決への取り組みをグラフやスライドで発表した経験があります。その際、上司から厳しい指摘を受けたことから、今回の機会に改めてわかりやすいスライド作りに挑戦し、評価を得られればと考えています。 タイトルで何が変わる? 文章を伝えやすくする方法は、特に営業の現場などでデータの不備を指摘する際にも役立ちそうです。タイトルで要点が明確に伝えられることで、読む側の負担が減り、理解不足から直接連絡が入るといった事態も防げるのではないかと思います。

クリティカルシンキング入門

数字が紡ぐ学びのストーリー

数字をどう分解する? 数字はグラフ化することで、視覚的かつ直感的に捉えやすくなり、説得力が増します。そのため、数字から情報を得る際は、ひと手間加えて分解することが重要です。ただし、単に区切るのではなく、仮定を立てた上でMICEを意識した切り口で分解する必要があります。分析を進めて結論にたどり着く過程では、短絡的な判断を避け、「本当にそうか?」と立ち止まって丁寧に確認する姿勢が求められます。 システムプロジェクトで何が大事? システムの導入や改修、さらには現行システムの廃止などのプロジェクトを進める際には、現状の課題と期待される改善点を明確に提示するために、数字を用いたデータ分析が役立ちます。システム関連のプロジェクトは多額の費用が動くため、慎重な判断が必要です。そのため、さまざまな切り口からデータを分解し、要件と費用の比較検討に活かすことが大切です。また、社員向け研修の終了後には、受講者アンケートの結果を分析し、そのフィードバックを次の計画に反映させる方法も有効です。 苦手意識はどう克服? 一方で、数字に対して苦手意識を持つ人もいます。私自身、業務で直接データを扱う機会はあまりありませんが、定期的に報告される各種レポートを基に、MICEを意識した分解の手法やデータの取り扱いに徐々に慣れていきたいと考えています。

アカウンティング入門

数字が織りなす経営の物語

会計の新たな視点は? アカウンティングというと、これまで単に「経理・会計」を連想していました。しかし、その本質には会社の活動を数字で分かりやすく伝えるという「説明する」側面があることに気付かされました。また、過去のデータを丹念に積み上げる几帳面な作業という印象が強かったものの、実はクリエイティブな一面も持ち合わせており、予算や数値計画の策定といった取り組みも広い意味ではアカウンティングに含まれると再認識しました。会社全体が意識して関わるべき活動であると感じています。 経営と数字はどう関わる? 起業後の自社では、経営と経理の双方に関わることになるため、財務諸表の各項目についての理解を深め、自社の現状を正確に把握できるよう努めたいと考えています。また、財務情報をもとに競合他社の分析を行い、参考にできる点を見つけ出すことも今後の目標です。大企業とスタートアップでは直接比較できない部分もあるかもしれませんが、成功している企業の構造を想像しながら学んでいきたいと思います。 新たな発見はどこに? 現時点では具体的なアイデアは浮かんでいませんが、グループワークを通じて異なるバックグラウンドを持つ仲間と議論を重ね、新たな気づきや知識を深めていきたいと考えています。どうぞよろしくお願いいたします。

クリティカルシンキング入門

データが示す問題解決のヒント

データの切り分けは? データから課題を抽出し、論点を明確にする構造的思考力の重要性を改めて認識しました。これまでの可視化されたデータ作成方法を復習しながら、「問題→要因分析→解決策提案」という一連の流れが実践的であると実感しました。特に、データの分類軸の切り方によって見えてくる内容が大きく変わる点は、今後の業務において有効に活用していきたいと考えています。 担当業務の見直しは? 私の担当する業務は、直接的に顧客データや売上データを扱うものではなく、事業やプログラムの実施および運営が中心です。現在、開始から3年目を迎えるプログラムのさらなる拡充を目指し、これまでの参加者の所属先、部門、所在地、業種などの特徴や、分野別の分析、そして他の類似プログラムとの比較など、さまざまな視点からの検証を進めたいと思います。 改善方法はどうする? また、自身が携わるプログラムの進捗や課題について、これまで限られた範囲で数値化するに留まっていましたが、今後は問題点を明確にし、MECEを意識した分類とグラフ化によって、限られたスペースにより多くの情報を効率的に伝えられる方法を再検討する所存です。作業中に方針がブレないよう、常に意識を高く保ちながら取り組んでいきます。

デザイン思考入門

顧客の声が未来を創る

顧客の声をどう活かす? 顧客とのコミュニケーションを活用する考え方は、営業提案の際に顧客からのフィードバックを積極的に求めることで、具体的な課題や求める解決策を明らかにできる点が魅力的だと感じました。顧客が直面する問題の背景を深堀りすることで、提案に反映させるアイデアが生まれる可能性を実感しています。また、社内でのブレインストーミングやアイデア出しのセッションでも、従業員の体験や市場トレンドに基づいた意見交換を行うことで、新たな視点が得られると考えています。 直接対話で何を学ぶ? さらに、顧客と直接対話することで、従来のデータ分析だけでは捉えきれなかったニーズや感情を把握できることに気づきました。具体的な課題を共有するプロセスは、提案の精度向上や信頼関係の構築に大いに寄与することが分かりました。 発想の自由さは何故? また、デザイン思考の「発想」プロセスでは、顧客のニーズや課題を十分に理解し、自由な発想を促すことの重要性を学びました。実際の顧客の声に基づいて多様な視点を取り入れることで、創造性が一層高まり、プロトタイピングを通じて迅速に形にすることが、実践的な解決策を生む鍵であると再認識しました。

クリティカルシンキング入門

問題の本質を捉える力を磨こう

本質はどう見える? 課題解決において、目の前の問題に直接取り組むのではなく、本質をとらえてイシューを明確にすることの重要性を感じました。これを実現するためには、物事を多角的に分析する必要があります。また、WEEK1からの学びをすべて振り返ることが今回の学びにつながると感じたため、再度復習をしようと考えました。 処方データの示唆? 医師への処方拡大を検討する際には、処方データや医師の治療方針などから課題を特定します。薬剤の処方データを扱う際には、複数の観点からデータを分解し、適切なグラフで傾向を示します。その後、イシューを特定し、実施すべき施策を決定します。 対象エリアは? 講演会を企画する場合には、対象エリアのデータを再確認して、取り組むべき内容について検討します。企画書を作成する際には、この情報をもとに具体的な内容を決定します。 計画の根拠は? 上長への活動計画の報告においては、担当施設の現状をデータにより明確化し、ボトルネックを明らかにした上で、なぜその計画に至ったのかを説明します。こうしたアプローチを取ることで、本質的な課題解決を進めることができます。

デザイン思考入門

数値だけじゃ見えない心の声

数値データの限界は? 日常業務では、健康診断データやストレスチェックデータなど、数値化された情報に注目して課題を抽出していました。数値データを用いて集団の絞り込みや全体像の把握を行っていますが、対象者の心の動きや考えといった質的な側面は数値化できないため、対話を通じて情報を得ることの重要性を実感しています。 現場の声はどう感じる? 私の職場では、机に向かって企画を練るだけではなく、現場を訪問し、そこで感じる空気感や対象者の生の声を直接拾うよう努めています。現場訪問やインタビューを通じて得られる情報は、人との関係性を深める上でも大変有益で、量的データと質的データの双方をバランスよく活用することが、より良い分析につながると考えています。 体験で分析は変わる? また、講座での体験を通じて、共感や感動から課題解決の糸口を掴むことができると実感しました。私たちは、陥りがちなデータだけに頼る思考から一歩踏み出し、現場での体験やインタビューを通じて得られる情報と数量データの両方を活用し、より具体的かつバランスのとれた分析を行うことが重要だと考えています。

データ・アナリティクス入門

仮説が映す未来への挑戦

仮説はどう説得力増す? データ分析において、仮説を立てることは説得力の向上に大変重要な要素だと実感しました。過去、現在、将来といった各目的に合わせて、結論や問題解決といった違いがある中で、仮説の活用は説得力を高めるだけでなく、自身の仕事に対する興味や関心を引き上げる効果もあると学びました。また、仮説を用いる際には、その精度を高め、迅速に検証を進めることが求められます。 報告はどのように変化? 自身の分析結果を報告する際、従来は仮説が正しいことを説明することを重視してきました。ですが、必ずしも直接的な正当性の説明にとどまらず、仮説自体の説得力をさらに高めることで、より充実した報告ができると感じるようになりました。今後は、この仮説とデータの活用方法を意識して実践していきたいと思います。 検証はなぜ時間かかる? 一方で、仮説の検証には予想以上に時間がかかることが多く、深い分析や検証が十分に行えていない現状もあります。他の参加者がどのように仮説検証を進め、時間管理や分析の精度を向上させているのかをぜひ伺いたいと思います。

戦略思考入門

先人の知恵で未来を切り拓く

本質と法則の意味は? 「本質を見抜く・メカニズムを捉える」ことの重要性を実感しました。一般化が難しいビジネスにおいても、法則やメカニズムが存在し、先人の知恵から学ぶことが大切だと感じます。事業経済性に関しては、規模の経済性や習熟効果、範囲の経済性、そしてネットワークの経済性といった要素が、コスト削減や生産性向上につながる戦略を支える基盤であると理解しました。また、自社だけでなく、上流のサプライヤや下流の顧客といった視点を取り入れなければ、事業を維持するのが難しいことも学びました。さらに、ムーアの法則に見られるような指数関数的な環境変化に敏感である必要性を強く感じています。 DX変革の必要性は? 一方で、自身が携わる市場品質業務のDX化や高度化については、直接的な競争相手との対決というよりも、AI・DX・ビッグデータの活用による技術革新の急激な進展という周囲の変化の中で、大規模な投資が求められると感じています。そのため、自社内のシナジーだけでなく、業界内外での連携を視野に入れた戦略が不可欠だと考えています。

データ・アナリティクス入門

分かると変わる!シンプル分析のすすめ

何がわかったら購入? パソコンを購入する際に、何を調べ、どのような情報が得られたら購入に踏み切るかという問いかけから、データ分析における「分析」の意味が明確になったと感じました。「分析」というと堅苦しくなりがちですが、「何がわかったら購入するか」というシンプルな視点を常に意識したいと思います。 意思決定のヒントは? 現状、組織全体でデータを活用して意思決定を行う文化が十分に根付いていないため、「何がわかったら◯◯するか」という観点を直接業務に取り入れるのは難しい印象を受けました。しかし、この視点を意識しながら業務を進めると、必要なデータや情報に気づく機会が増えると考えています。 新規事業の目的は? また、現在企画中の新規事業においても、「何が分かったら◯◯するか」という目的設定を明確にすることが重要だと感じています。特に、地域におけるアンコンシャス・バイアスの解消を目指す事業においては、目的が不明瞭な部分があるため、その課題解決の有用性をデータに基づいて説明できるようにしていきたいと思います。

データ・アナリティクス入門

目的再確認で磨く鋭い分析

計画の反省点は? これまで計画的な勉強をせずに分析業務を進めてきましたが、これまでの経験を体系的に整理できたと感じています。 比較検討する意味は? 特に印象に残ったのは、目的と比較対象を再確認することで、分析の内容がより鋭くなった点です。どの手法や見せ方を選ぶかは、結論を導き出しほかの人に共有する上で重要であり、データに応じた適切な手法の選択が求められます。 共有の大切さは? 今後は、何を目指し何と比較するのかを具体的かつ明確にし、チーム内でしっかりと共有することを徹底していきたいと考えています。これにより、分析結果がより精度の高い仮説検証に繋がり、プロセス全体の質が向上すると思います。 挑戦の意義は? 具体的には、フォローアップや分析の都度、目的を直接再確認すること、目指すべきものと比較対象をはっきりさせた上で最初にチームと確認し合うプロセスを重視しています。また、習得した分析手法を活かし、普段あまり使用しなかった方法にも意識的に挑戦するよう心掛けています。

データ・アナリティクス入門

学びの先に広がる未来

知識活用はどうする? これまで自己研鑽してきた内容について、ただ知識を積み重ねるだけでなく、具体的にどのように活用するかまで考えてこなかったと実感しました。すぐにはイメージしにくい現実の場面で、学んだ知識がどう生かされるかを真剣に考えることで、新たな視点が得られると感じています。そのため、単なる習得にとどまらず「学習の先」をじっくり考える時間を持つことの大切さに気づかされました。 データの見直しはどう? また、直近ではデータ分析の作業に直接関わることはありませんが、自身が担当する事業におけるさまざまなデータについて再度整理する必要性を感じています。どのようなデータが存在し、どのように収集され、どのような活用方法(結果の仮説)が考えられるのかを洗い直すとともに、これから集めるべきデータについても検討し、具体的な収集方法を年度末までに模索し、準備を始めることができるのではないかと思いました。
AIコーチング導線バナー

「データ × 直接」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right