クリティカルシンキング入門

データ分析の新たな視点を発見!

データの見方はどうなる? データの視点やグラフの表示形式が異なるだけで、見方が大きく変わることを実感しました。データ分析を行う際、まず仮説を立て、その仮説に基づいて情報を得るための切り口を考えたいと思います。逆に、他者が行ったデータ分析の結果を見るときは、その結果やグラフをそのまま信じるのではなく、見落としていることがないかを注意深く確認することを心掛けたいです。 顧客アンケートはどう見る? 業務で顧客アンケートを分析する機会が多いため、分析時に複数の観点から試してみたいです。また、サービス改善を設計するときにも、データを根拠にした設計ができるように役立てたいです。特に定性的データ、つまり自由記述のデータをどのように分析していけばよいのか、これからさらに学んでいこうと思います。 定性と定量の使い分けは? アンケート分析に関しては、事業部での週次ミーティングで報告することが多いため、その際には複数の観点からの分析結果を提示できるようにしたいです。また、定性的データの解釈に関しては、単独で分析するのではなく、定量的データと組み合わせて客観的に分析できるように努めたいと考えています。

クリティカルシンキング入門

立ち止まり、疑問を力に変える

どう深堀りすべき? 分解のプロセスでは、目に見える事実だけに当てはまらず、常に疑問を持って深堀りすることが、課題の本質を把握する上で非常に重要であると理解しました。実際の業務ではスピードが求められるため、予想通りのデータが出ると次のステップへと急ぎがちですが、一度立ち止まって、より深く検証する姿勢を大切にしていきたいと思います。 真実をどう捉える? また、品質不具合や設備のトラブルにおける再発防止の取り組みにこの分析を活用しています。結論ありきの報告が多く、グラフの見方などを深く疑っていなかった点に気付きました。今後は、別の切り口から事象を捉えることで、これまで見過ごしていた現実を明らかにできないかという問いを持つように努めたいと考えています。 原因究明の本質は? 過去の経験から、品質不具合や設備トラブルの原因を掘り下げることで、根本原因が共通しているケースが多いと感じています。特に、ある地域では、事象の特定は得意である一方、原因究明が軽視されがちな傾向があるため、日々の業務の中でさらに踏み込んだ分析を実践し、原因究明の体質を根付かせたいと再認識しました。

データ・アナリティクス入門

目的明確!振り返りから学ぶ分析術

比較で何を学ぶ? 分析は、比較するところから始まります。ただ単に集計結果をまとめるだけではなく、そこから得られる示唆を示したり、グラフ化して見やすく提示することが求められます。また、分析はあくまで手段であるため、常に分析の目的に立ち返り、手段自体が目的にならないよう注意する必要があります。比較対象としては、目に見えるデータや得やすいデータだけでなく、見えにくい側面も含めて選定することが大切です。 目的設定はどうする? そのため、データをエクセルで加工する前に、まず十分な時間をかけて目的や比較対象を明確にすることが重要です。目的をはっきりさせることで、分析結果の妥当性や有用性を高めることにつながり、関係者の意見を取り入れるなどして、慎重に検討する姿勢が求められます。 何を紙に書く? また、分析を始める前に、目的、比較対象、仮説などを紙に書き出しておくとよいでしょう。作業中は都度その紙を見返し、目的から逸れないよう気をつけます。目的があいまいなまま設定されることが多いため、必要に応じて、事前にまとめた事項を見直しながら分析を進めることが効果的だと考えます。

データ・アナリティクス入門

広い視野で挑む仮説の極意

仮説全体はどう捉える? 仮説の立て方について学んだ内容の中で、まず複数の仮説を設定し、その網羅性を高めることが重要であると感じました。一つの視点に偏らず、様々な可能性を検討することで、問題の全体像を見失わないアプローチが実現できると思います。 裏付けデータはどう検討? また、仮説を裏付けるデータだけでなく、反証する可能性のあるデータも収集する必要性を学びました。データの集め方一つとっても、どの側面から情報を集めるかによって、結果の信頼性が大きく変わるため、留意する点が多いと感じました。 他部門への影響はどんな? さらに、全社的な課題の場合、仮説は自分の部門だけに留まらず、他の部門にも影響を及ぼす可能性があるため、その立て方には工夫が求められると実感しました。たとえば、営業利益の低下という問題は、売上減少だけが原因か、製造ラインの効率低下が関与しているのかといった複数の視点から検討する必要があります。局所的な原因にとらわれず、マクロな視点で多層的かつ複眼的な仮説を立て、各部門としっかりコミュニケーションをとることが、問題解決に向けて不可欠だと考えました。

データ・アナリティクス入門

データ分析で業務改革を目指す学び

データ分析で重要なのは? 現在、実務の初歩的なデータ分析に触れる機会はあるものの、改めて分析手法を体系的に理解することができました。特に、データ分析においては課題設定と仮説が極めて重要です。ただ単に分析手法の知識を持つだけでなく、領域知識も必要となるため、日常業務では特に業務理解を深めることを意識していきたいと思います。 業務改革で何が求められる? 業務改革の根拠としてデータ分析を利用することが多いですが、第1週の学習を通じて、私が現在取り組んでいるのは、分析というよりもむしろ集計や可視化に近いことを理解しました。したがって、まず課題の設定や仮説に基づいてどのようなデータで比較するかを慎重に検討し、情報を収集することから始めるべきだと考えています。 領域知識を高めるには? また、課題設定や仮説を立てるための領域知識が不足しています。そこで、領域知識の向上を目指しながらも、分析を進めるためには周囲の協力を仰ぐことも重要だと感じています。データが複数のシステムにまたがって保存されているため、一度どのようなデータが存在するのかを整理することが重要です。

クリティカルシンキング入門

多角的視点が解くデータの謎

多角的視点はどう? データを見る際には、様々な切り口を持つことの重要性を改めて実感しました。切り口のレパートリーが少ないと、誤った解釈に導かれる恐れがあるため、一つのデータに対して複数の視点から分解することが、正確な解釈へとつながると感じています. 応募増加の理由は? 具体的には、月間の採用進捗を確認する場面で、前月から応募が増加した場合、属性・性別・年齢などの観点でデータを分けて検証すれば、その増加の要因がより明確になると思います。こうした実践的なアプローチが、日常業務における分析力向上に役立つと考えています. 切り口は変える? また、普段からデータを見る機会が多いこともあり、いつもより2パターンほど違った切り口で検討することを意識していきたいと思います。これにより、単に数字を見るだけでなく、背景にある要因や意味まで理解する助けとなり、分析の幅を広げることができると思います. 深い洞察は得られる? このような進め方を継続することで、データの分解に対するレパートリーをさらに充実させ、より深い洞察を得られるよう努めていきたいです.

クリティカルシンキング入門

数字が紡ぐ革新のストーリー

パターンはどう見る? 観測された事象データの相関比較から、背後に潜むパターンや特徴を発見し、未知の事象に対しては予測や仮説を立て、具体的な施策を検討しています。各プロセスでは、項目と事象の関係をブレークダウンして文字化することが重要であると考えています。 施策の領域は? また、ブレークダウンする際の項目数が多いほど、検討すべき施策の領域が広がるため、PDCAサイクルの回転回数を増やすことが可能となり、成功に近づけると感じています。 協業の効果は? この手法は、協業候補先企業の事業分析や、外部要因・内部要因の分析、事業戦略、シナジー効果などのスライド資料作成時にも有効です。具体的には、データを分解して対象企業の各販売業界ごとの比率を明確にし、各業界の今後の市場成長率との相関を基にした売上推移シミュレーションのデータ化やグラフ化が求められます。 結論はどうする? さらに、パワーポイント作成時は「結論-論拠×3」という構成を意識し、スライドメッセージと添付グラフの配置にも工夫を凝らすことで、論拠の濃度と伝わりやすさを向上させています。

データ・アナリティクス入門

データと仮説で納得の選択

正確なデータは? 実務では、正しいデータに基づく比較ができていないため、意思決定で迷うことが多いと実感しています。経験や定性評価のみに頼ると限界があり、説得力にも欠けるため、定量的なデータを用いて自分自身も相手も納得できる意思決定を行いたいと考えています。 データの扱いは? これからは、まだ扱ったことのないさまざまな種類のデータに触れる必要があると感じています。そのため、まずはデータに関する知見を深め、各データの特徴に合った加工方法やグラフの見せ方を学びたいと思います。 仮説の重要性は? また、分析のプロセスでは、目的だけでなく必要な項目やデータに対する仮説の設定が重要だと感じています。仮説を立てる力を養うためにも、多くのデータに目を通し、さまざまな角度からの切り口を見出すためのフレームワークを習得したいです。現在担当している店舗オペレーション改善においては、トライアル検証やローンチ後の結果分析が課題となっており、通常の切り口に加えて新たな視点からの比較を行い、分析結果をプランニングやプレゼンテーションに活かしていきたいと考えています。

データ・アナリティクス入門

問題解決力を高め、シナリオ実践へ挑戦

問題解決のプロセスとは? 問題解決のプロセス、What、Where、Why、Howについて学びました。私は前職でQC的な問題解決を学び、問題やボトルネックの特定、「なぜなぜ分析」、計画、アクションのような手法で考える癖があり、今回学んだ内容と似ている部分が多いと感じました。しかし、元の思考フレームワークに戻りがちな自分を再認識しました。 フラストレーションを解消するには? データ分析や見える化は行っているものの、仮説の検証や具体的なアクションを自発的に行っていない部署の現状にフラストレーションを感じています。おそらく、具体的なアクション(How)を実行できないと諦めているために、根本原因(Why)の追求が疎かになっているのではないかと考えています。 新たなシナリオ作成と実践法 今回学んだことを基に、「How」を実行できると仮定してシナリオを作成し、実践してみたいと思います。また、一連のプロセスを効率的に進められるよう、自身をトレーニングし、さらにBIツールやPythonを活用して知見やスピードを向上させる手法を学びたいと考えています。

クリティカルシンキング入門

問題の本質を探る思考の鍛錬

本当の課題は何? 顕在化している問題をそのままイシューとして設定するのではなく、なぜそれらが生じているのか、本当の問題は何かを分析することが重要だと感じました。なぜなら、顕在化した問題に対して対症療法的なアクションを取っても、根本的な解決にはならないことが多いからです。しかし、本質的な課題を見つけるのは今の私にとって非常に困難であるため、思考を鍛える練習が必要とも感じています。 仕事のバランスはどう? デイリー業務と企画業務のバランスを考える際や、残業時間削減に向けた対策の検討など、さまざまな場面でこのアプローチは役に立つと思います。顕在化した問題に隠れている潜在的な問題を深く分析し、正しい対策を探っていきたいです。 事実の関連はどう見る? 見えている情報だけでイシューを設定するのではなく、なぜその事象が発生しているのかを考えるようにします。また、1つの事実から安易に結論を出すのではなく、複数の事実を関連づけ、問題の本質を考える癖をつけたいと思っています。情報を分析する際は、データを加工し、複数の視点からの検討を行うことも重要です。

クリティカルシンキング入門

データが語る組織の新しい一面

データ加工で新たな発見をするには? データを加工することで、その特徴を理解できるようになります。最初は特徴がないように見えるデータでも、分解して可視化することで新たな特徴を発見できます。分解する際には、MECEを意識して多くの観点からアプローチすることが重要です。これにより、データの特徴をより深く理解することが可能になります。 組織の稼働状況をどう可視化する? 私は組織の稼働状況や勤怠状況を可視化する業務をよく行っています。しかし、データの切り口を考える際には、目の前の情報だけに頼ってしまうことが多いです。今回の学習を通じて、切り口を言語化し、応用するための新しい視点を得ることができました。 データ分析に重要な視点は何? データを分解する際には、When、Who、Howを意識して、多くの切り口をまず検討することが重要だと感じました。組織メンバーの業務の偏りを分析する際、これまでは組織毎や案件毎といった切り口で見ることが多かったですが、今後は役割ごと、入社年次ごと、グレードごとなど様々な切り口も加えて分析を行ってみようと考えています。

クリティカルシンキング入門

伝え方に効く!見せる工夫の魔法

新たな発見は何? 今週の演習を通じて、自分が気づいていなかった新たな発見がいくつかありました。グラフで可視化するだけでなく、種類や配置など、相手に伝えやすい工夫が必要だと感じました。また、フォントやカラーといった文字の効果にも注目し、伝えたい内容を強調するためにアイコンを追加したり、表現方法を工夫することで大きな効果が得られる点が印象に残りました。 既存資料で苦戦? 業務では、社内用の資料やプレゼンを作成する機会が多いですが、既存のテンプレートに沿って作業することが多く、自分のアイデアを表現する余地が少ない状況です。以前、グラフを用いた可視化が予期せぬ反応を呼んだ経験もありました。 伝え方は工夫? 実践的な活用として、チームミーティングの資料やデータ管理における指標の提示に今回の学びを生かしたいと考えています。「伝えたいこと」を強調することで、共通認識の形成や具体的なアクションプランの構築につながると期待しています。今後は、プレゼンの体裁だけでなく、伝え方にも工夫を凝らし、より説得力のある資料作りを目指したいと思います。
AIコーチング導線バナー

「データ × 多い」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right