データ・アナリティクス入門

データ解析の「やったつもり」を脱却する方法

直感的な解析で本当に大丈夫? 本講座の学習と総合演習を通じて、"直感的なデータ解析はNG"であることを強く感じました。合計や平均などの一般的な解析手法を反射的に実施してしまう癖があり、それらを実施しただけで"やったつもり"になってしまう場面があることを再認識しました。 ビジネスに繋がる数字とは? 業務において求められているのは、誰でも分かる当たり前の数字を出すことではなく、ビジネス上の優位性を生む数字です。例えば、競合他社より売り上げを伸ばす、納期や費用を圧縮するといった具体的な目標に直結する数字が求められます。今後は、どのデータをどう活用すればこうした差を生む数字を導き出せるかを整理し、解析業務の棚卸を行いたいと考えています。 データの棚卸しで見直すべき点 具体的には、定型業務の棚卸を実施し、これまで報告してきたデータの有効性を見直す予定です。これまで蓄積してきたデータが、競争上の優位性を生む数字となっているかを評価し、有効であれば継続し、効果がなければ見直しを行い、代替案を提案します。

クリティカルシンキング入門

人事評価のフィードバック術を磨く方法

伝えたい内容の柱とは? 伝えたい内容を無闇に文章化することは急ぎすぎです。何を柱として伝えたいのか、そしてその柱を支える理由は何かをまず考えるべきです。この柱と理由を洗い出し、状況に応じて最適な組み合わせを選択します。主語と述語を明確にし、簡潔に伝えたい内容を整理して文章化することが大切です。最終的に、完成した文章を俯瞰することで、相手にわかりやすい文章を作成することを学びました。 部下への効果的なフィードバックは? 部下への人事評価フィードバックを行う際には、まず部下の成果から良い点、さらに伸ばしてほしい箇所、そして改善が必要な点を柱として考えます。それぞれに対して理由付けを行い、一つ一つを簡潔に理解しやすい文章で伝えることが重要だと感じました。 人事評価コメントの整理法は? 人事評価フィードバックのコメントでは、伝えたい内容を整理せずに書いてしまうことがよくあります。そのため、文章を書き始める前に、伝えたい柱とその理由をまず整理してから文章化することが必要だと考えています。

データ・アナリティクス入門

効果的な分析方法を学び成功へ一歩前進

効果的な分析手法を学ぶには? 分析を行う際に、ただ漠然と進めるのではなく、ステップを考え、ロジックツリーを用いることやMECEを意識した切り分け方を学んだおかげで、より効果的な分析ができるようになった。これからは慣れに頼らず、きちんと目標を持って分析を行っていきたい。 売上向上への試行錯誤とは? 売上が伸び悩む中で様々な試行錯誤を続けているが、前回学んだ「目的」「仮説」「数字の性質」に加えて、今回の「ステップ思考」「ロジックツリーでの展開」「MECEを意識した切り分け」を活用し、過去の数値分析を再度行いたいと思う。 新規施策提案のためには? 新規施策を提案する際には、目標となる部分と仮説、そしてそれがステップ思考になっているか確認し、ロジックツリーを実際に作成して客観性があるかどうかを見極める。また、MECEを意識することで、意味のある分析・評価に繋がっているかどうかを自問自答していきたい。そして、その提案をメンバーや上層部に向けて発信していく予定だ。

戦略思考入門

課題解決を導くフレームワーク活用術

なぜ課題の抽出が重要なのか? 課題や論点の抽出において、もれなく重複なく進めることと、解決策を模索することの重要性が強調されています。この過程では、ステークホルダーと足並みをそろえて議論を深めるために、フレームワークの活用が有益です。ただし、各ケースに応じて最適なフレームワークを選択する必要があるため、事前の認識合わせが不可欠です。 フレームワーク活用の意義とは? 自社の営業戦略や施策実行の判断に際しても、フレームワークに基づくディスカッションとアウトプットの作成が、論点の漏れを防ぐ役割を果たします。また、このプロセスを通じて自社商品の特徴を再評価し、環境分析を実施します。 効果的な会議準備方法は? 普段の情報共有の場とは異なる長めの時間を設けて課題整理のディスカッションを行うことが提案されています。その前準備として適切なフレームワークを決定し、可能な範囲でアウトプットを準備することが求められます。これは、会議を効果的に進めるための重要なステップです。

データ・アナリティクス入門

A/Bテストで成果を見える化!

真因はどこにある? プロセスを分解し、問題がどこにあるのか、さらにその真因を掘り下げるアプローチは非常に重要です。このような手法により、具体的な対策が見えてきます。特に、A/Bテストを用いた評価方法は、複数の施策を公平に比較するために有効です。ランダム性を持たせつつ、できるだけ条件を同じにして施策をリリースし、実際の結果を基に評価することが求められます。 課題はどう捉える? 実際の業務では、A/Bテストを行う機会は少ないかもしれませんが、顧客の課題をプロセスに分解し、その真因を探りながら仮説を立てることは、多くの場面で有効です。このような手法で、顧客の表層的な課題だけでなく、プロセスの詳細まで深く掘り下げることが大切です。 データは信頼できる? そのためのヒアリングやディスカバーを繰り返すことで、有意義なデータを収集し、場合によっては実地での業務サーベイを行うことも検討します。これにより、定量的なメリットの根拠を構築することが可能になります。

クリティカルシンキング入門

退職分析に新たな視点を見出した学び

手法が偏っている? MECEや分析は普段の業務から実施していますが、その手法が偏っていることに気づきました。より幅広な視点からデータ分析を行い、矛盾や重複、不足がないように、手を動かしながら進める必要があると感じています。 新たな分析切り口とは? 具体的には、現在の業務で組織内の退職者分析を行っています。これまでは勤続年数や年齢、入社区分、役職、評価で分析していましたが、この方法では単純なレンジでまとめていました。今後は仮説を立てつつ、データの特徴が掴めるような切り口を工夫したいと思っています。また、AI(CopilotやChatGPT)を活用して、自分では気づかない切り口も探していきたいです。 分析方法の見直しは必要? 退職分析チームとミーティングを行い、これまでのステレオタイプな分析方法を見直すことを提案しました。特に、管理職者へのインタビューを元に仮説を立て、新卒若手かつ高評価者の退職傾向やその時期を特定する努力をしています。

データ・アナリティクス入門

実践で磨く論理的仮説力

復習会で何を学んだ? 今週は、学んだ内容を振り返る復習の会が行われました。授業内での演習では、これまで学んだ知識が実際の場面で役立つことが多く感じられましたが、フレームワークの定着が不十分なため、仮説を立てる際に無計画に仮説を出してしまうこともありました。しかし、即座にフィードバックを受けることで、その意見が定着の助けとなり、次のステップに進む良い機会となりました。 業務でどう活かす? 学んだ内容は、業務での問題解決や意思決定に大いに役立ちそうです。例えば、部門で課題が発生した場合、データ分析を用いて仮説を構築し、フレームワークで整理することで、明確な解決策を導き出しやすくなります。また、新しいツールや業務プロセスの導入時には、評価軸を設定し、客観的に比較する方法が意思決定の支援に有効です。今後は、データ分析技術やフレームワークを日常的に意識して活用し、論理的な仮説立案を習慣付けることで、業務の説得力と成果を高めていきたいと考えています。

データ・アナリティクス入門

データ分析で差を生み出す4つの秘訣

顧客分析で何を重視する? 顧客分析や市場分析を行う際、まず「分析とは比較すること」であり、目標と仮説をきちんと立てることが重要だと学びました。定性的な分析に偏りがちで説得力を欠くことがあるため、尺度や数値の性質を正しく理解して、しっかりと分析・評価・考察を行いたいと思います。 他社比較で成功するには? 今後、様々な施策を行う時に他社比較やABテストを実施する機会があると思われますが、その際には、「比較」「目的」「仮説」「考察」を確実に具現化してから各数値の分析・評価を行うことに努めたいと考えています。メンバーや上層部にも十分な納得感を持って進められるようにしたいです。 数値分析の心構えは? そこで、まずは様々な数値を扱う際に「比較対象の妥当性」「目的」「仮説」「考察」の4つを常に念頭に置いて仕事に取り掛かるよう心がけています。また、分析方法についても数値の性質を見極めつつ、適切に分析・評価を行いたいと考えています。

クリティカルシンキング入門

効果的な伝え方に目覚めた研修

どうしてシンプルに? 相手に伝えるのではなく、「相手に伝わる」という観点から多くの学びを得ました。これまで文字の色を変えることで目立たせてきましたが、タイトルの強調には斜体を使うなど、他の方法もあることに気づかされました。不要な要素を取り除き、シンプルに考えることが重要だと感じました。 グラフで比較する? 現在、研修アンケートの回答率や評価を示すまとめ資料を作成していますので、今回の演習で学んだことを活用したいと思います。また、昨年のアンケート結果と比較してどうだったかを考える際、比較をグラフで表現するのも効果的だと感じました。 スライドは伝わる? アンケートの集計が完了し次第、今回の演習を活かしてスライドを作成します。スライドは2パターン作成し、どちらがより効果的に伝わる内容になっているか、周囲のメンバーに意見を求めてみるつもりです。その際には、強調すべきポイントも伝えつつ、アドバイスをもらう予定です。

データ・アナリティクス入門

数値に隠れた学びの秘訣

単純平均で十分? まず、単純な平均値の算出だけでは誤解を招く結果になる可能性があると感じました。標準偏差を用いた分析、加重平均の導入、さらには外れ値を除外して計算するなど、数値として意味のある手法を用いる必要があるという考えに至りました。 NPS集計はどう変わる? また、問い合わせ対応後に実施しているNPSの集計についても、状況に応じた評価が重要だと考えます。障害発生時のNPSスコアと、通常の問い合わせ時のスコアが大きく異なるため、障害などの背景情報を考慮に入れて集計した方が適切であると思いました。 状況別スコアの信頼性? さらに、NPSの回答スコアは状況によって変動するため、その状況に関する詳細な情報を併せて提示し、分析の軸として活用することが望ましいと感じています。どのような状況でどの集計方法が最適かを試行錯誤しながら、知識とスキルを磨いていきたいという思いが伝わりました。

データ・アナリティクス入門

数字から見える学びの世界

データの傾向は見えますか? データはビジュアル化することで多くのことが見えてくると感じています。そこで、まずは業務の件数や週平均、月平均などの数値を確認し、どのような傾向があるのか把握することから始めたいと思います。 年次データのばらつきは? 次に、年単位でのデータをヒストグラムに落とし込み、ばらつきや偏りがあるのかを検証してみたいです。年代ごとの偏りから、ある種のマーケティング施策が影響しているのではという仮説を立てることができ、実践演習で学んだ知識が非常に役立ちました。 平均値の使い分けは? また、単純平均だけでなく、加重平均や幾何平均など、状況に応じた平均値の使い分けが正しい分析につながるということを再認識しました。さらに、数字のばらつきを評価するために、標準偏差のような指標を実際の業務データで算出し、その計算方法や数字の感覚を磨いていきたいと考えています。

クリティカルシンキング入門

柔軟思考で挑む新しい一歩

思考の整理はどう? 論理的思考や多角的な視点、適切な情報評価の大切さを改めて認識しました。情報の背景を正確に把握し、正しい問いかけができることで、複数の観点から物事を分析する力を養う必要があると感じています。 決断の根拠は? また、これまでの経験や情報に頼るだけでなく、判断の正確性を意識して計画を進めることの重要性を実感しました。一方で、考え込むあまり思考時間が長引き、スピード感が失われるリスクにも注意が必要だと感じています。 実行方法はどうなる? 今後は、リスク分析や問題解決、データ分析において、学んだ手法を活用しながら、必要な情報を漏れなくかつ重複なく整理して対応していくつもりです。思い込みやバイアスを排除するための具体的な方法はまだ確立していませんが、試行錯誤を重ねながら取り組んでいきたいと考えています。

「方法 × 評価」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right