データ・アナリティクス入門

分析で見える!自分の可能性を探る旅

分析目的をどう定める? まず、分析を行うためには、その目的を明確にすることが大切です。分析の核心は、物事を比較することにあります。適切な比較対象を選ぶ際には、「apple to apple」を意識し、時には目に見えないデータとも比較することが求められます。仮説を立てた上で、分析を進めることが重要です。また、分析結果を可視化する際には、その目的を常に念頭に置くことが求められます。 新しい業務の分析に必要な視点は? 新しい業務に取り組む際には、市場規模や競合他社、収支計画など、多岐にわたるデータを使用し、取り組む価値があるかどうかを分析します。コンサルティングなどの導入時においては、従来の定性的な説明に加え、コスト、業務効率化、収益への影響についてデータに基づく分析を行い、より説得力のある説明が求められます。 仕事の本質をどう理解する? 次に、「自分が何をしたいのか」を明確にし、自身の仕事の本質を正確に理解します。その上で、なぜ分析が必要であるのかを整理します。分析を始める前に仮説を立て、その仮説を検証するために必要なデータを収集します。最終的には、分析結果を適切に可視化し、周囲を納得させられるようにすることが重要です。

データ・アナリティクス入門

データ分析から始める業務効率化のアイデア集

分析はどのプロセスから始める? <印象に残った内容> ・プロセスに分解し、各プロセス毎に数値を見る ・A/Bテストの前に目的と仮説を明確にする ・データ分析はまず身近な課題から着手する A/Bテストの代替案は? <感想> A/Bテストはオンラインサービスとの相性が非常に良いが、対面サービスやコストの問題で簡単に実施できない場合の代替案が気になりました。 残業時間削減へのアプローチ ①社内で使用しているSFA(営業支援システム)の切り替えに伴い、入力画面のインターフェース検討においてFigma等のツールを使ってA/Bテストを実施し、手戻りが無いようにする。 ②今後の人員削減に伴い、業務の棚卸しを行う。 この切り替えは少し先になるため、思考訓練として自分の残業時間を減らすための施策を考えました。 まず、業務の洗い出しと各業務のプロセスの分析を行います。そして、以下の代案を検討します。 外注や自動化は可能? ・外注の可能性を探る  ・無料の外注が可能か  ・有料の外注が利用できるか ・自動化を進める ・不要なプロセスを廃止する 以上のステップを踏み、効率的かつ効果的な業務運営を目指したいと考えています。

クリティカルシンキング入門

データ整理で見えた多面的な視点の新発見

データはどう活かす? データをグラフ化することで、共有者全員が視点の漏れを確認でき、短時間で状況を把握できることに気付きました。角度を変えて情報を整理することで、複数の視点を生み出すことができました。また、留意点として、分解する際には、思いつくことから手を付けるのではなく、「When」や「How」といった枠組みで考えることで、漏れのない結論にたどり着けることを実感しました。 部門承認はどう取得? 研修計画を部門承認に使用する際には、実施方法や日程、参加者の切り分けなど、多くの検討事項があります。部門の承認を得るために、目的に沿った切り分けの考え方を使う必要があります。そして、部門説明の際には、即座に理解できるわかりやすさや、視覚的に理解が進む資料を重視したいと考えています。学んだグラフ化を使用する機会は少ないかもしれませんが、情報が伝わりやすい図の検討が重要です。 資料作成の工夫は? 具体的には、切り口や切り分けの考え方を一枚にまとめ、自分なりの順序を整理します。そして、研修計画の検討事項ごとに切り分けを行い、提案資料を作成する際には、数字や表ではなく、図で示すことができるよう工夫してみます。

リーダーシップ・キャリアビジョン入門

キャリア・アンカーで未来を描こう

キャリアの価値観はどう? キャリア・アンカーについて学びました。これは、自分がキャリアを考える上で何を重視しているかという志向を理解するためのものです。自分の志向を客観的に把握することで、仕事に対する気持ちを理解し、前向きに取り組める仕事内容を選ぶことができると考えています。特に若手メンバーには、キャリア・アンカーを活用してもらうことに大きな価値があると思います。 診断シートの使い方は? キャリアの方向性がまだ定まっていないメンバーには、キャリアアンカー診断シートを用いて自身の志向を客観的に判断できるようにしています。ただし、キャリアサバイバルの概念は、会社の現状を考慮すると離職につながる恐れもあるため、注意深く使用する必要があります。 1on1で本音はどう? 1on1では、複数のメンバーにキャリアアンカー診断シートを使って本音を探る取り組みをしています。その結果から、依頼すべき仕事の内容や、避けたほうが良い仕事の内容が見えてくることがあります。しかし、診断結果はあくまで参考として使用し、志向に反する仕事を依頼しなければならない場合もあるため、チーム運営の目的を損なわないように注意しています。

クリティカルシンキング入門

思考を可視化して得る新発見

どうやって問いを共有? 今取り組むべき課題に常に焦点を当て、その問いを周囲と共有し共通認識を持つことが重要です。このため、問いを可視化し、自分の思考に偏りがないかをメタ認知することが求められます。知識のインプット、アウトプット、他者からのフィードバック、そして振り返りを絶え間なく繰り返し、継続していくことが不可欠です。 どんな文章構成? これらの考え方は、文章作成やチーム内での発表、プロジェクトの企画・提案などの場面で活用できます。具体的には、すぐに文章を書き始めるのではなく、まず文章構成を考え、ターゲットとなる読者像に応じた伝え方を工夫します。また、ロジックツリーを利用して思考を明確にし、チームで共有する際には具体的な言葉を使って誤解が生じないようにします。さらに、目的に沿ったデータを選び、その使用意図を常に考慮します。 思考はどう見極め? 日常業務においてこれらのアプローチを心に留め、上質な情報のインプットとアウトプットを心がけ、周囲からのフィードバックを依頼します。思考が偏ることを防ぐため、仕事以外でも常に思考の過程を可視化し、メタ認知を実践することが大切です。

マーケティング入門

情緒価値で広がる魅力戦略

情緒的付加価値とは? これまで、商品の展開において情緒的な付加価値を意識したことがありませんでした。情緒的価値とは、商品が本来の使用目的に加えて提供できる+αの価値のことです。 カードの魅力はどう? 例えばカードゲームでは、プレイ中の楽しさという機能的価値だけでなく、パッケージの開封時に感じる喜びといった情緒的価値も存在します。封入率など、商品の設計に工夫を凝らすことで、この情緒的な部分を演出し、魅力ある商品戦略が実現できると感じました。 長期利用の秘訣は? また、商品やサービスを長期的に使用してもらうためには、付加価値の創出が重要だと考えます。顧客が商品を使う際にどのような感情を抱くかを想像し、その体験を豊かにすることが、結果として愛着や認知度の向上へとつながります。そのため、売り場のレイアウトの工夫や、接客における他社にはない+αの体験提供が求められると感じています。 付加価値はどう伝える? 実際に自分が関わっている商品で、意識的に付加価値が創出されているものがあれば、どのような商品でどんな付加価値があるのか、ぜひ教えていただきたいです。

データ・アナリティクス入門

ビジュアルで味わう分析の面白さ

平均の意味は? 複数の平均(単純、加重、幾何)をビジュアルで理解できたのは大変参考になりました。計算自体は表計算ソフトを使用すれば難しくないものの、イメージをしっかりと思い出し、目的に合わせて正しく使用することが大切だと感じます。また、今まで漠然としか捉えていなかった標準偏差も、今後、平均とデータのばらつき具合を説明する際に大いに活用できると考えています。 分析方法はどう? 膨大な顧客情報や生産実績の分析においては、単純平均や幾何平均を用いた有用な分析方法があると実感しました。売れ行き製品の傾向をグラフで表現する際、散布図の利用も面白い発見です。これまで棒グラフによる比較が中心でしたが、何をアピールしたいのかを一歩深く考え、見せ方を工夫する必要性を感じさせられました。 データ活用はどう? 所属する営業グループ内でも、データ集計方法や見せ方に関して工夫が求められています。これまで、従来のやり方を盲目的に踏襲するか、各自の感覚に頼る方法に偏っていたため、私がリーダーとして理論に基づいたデータ抽出とグラフ選択を整理し、より効果的な活用方法を提示していきたいと思います。

データ・アナリティクス入門

平均再発見!生データが語る学び

平均って何だろう? 基本的な代表値である平均とばらつきを再確認しました。また、関連するフレームワークの動画を通じて、単純平均、加重平均、そして幾何平均といった具体的な計算方法が存在することを学び、以前は知っていた幾何平均についても、計算方法や名称を含めて改めて理解することができました。 中央値はなぜ大切? 技術職として、日常的に平均値や標準偏差を用いたばらつきの分析を行っています。中央値については、その定義や目的を理解しているものの、実際の業務では頻繁に使用することはありません。しかし、中央値が持つ目的を意識し、グラフや図を用いて全体の分布や外れ値の有無を確認することで、解析の正確性を担保していると感じています。 外れ値の確認方法は? また、普段からデータに触れる中で、改めて図での表示を行い、データの前処理における外れ値の存在を意識することの重要性を再認識しました。どの業務においても、正しい目的意識を持つことが根幹であると実感しており、今回学んだ単純平均、加重平均、幾何平均を活用して、目的に即した正確な解析を進めていきたいと考えています。

データ・アナリティクス入門

データ分析にAI活用!新たな発見の連続

ChatGPTを活用する意味は? 実践演習がメインの週だったが、データ分析は答えがない世界だと感じているので、自分で考えるだけではなくChatGPTを共に使用して問題解決を試みた場合、どのような成果が得られるかに焦点をあてて演習に取り組んだ。普段は自分の頭で考え一人で結論を出していたが、そのことに限界を感じていたため、今回の受講はAIを活用する実践の場として非常に学びが多かった。 AIの活用で得られる視点は? どれだけ訓練を積んでも、人間である以上、自らの思考には必ず偏りがある。多面的な視点でデータ分析を行うことが問題解決の第一歩であり、AIを活用して多くの視点を得ることが有効だと改めて気づくことができた。これからは、普段からAIを十分に活用するよう心掛けたい。 AI相談の工夫を学ぶ データを分析する際、必ず一歩立ち止まり、AIに素直に相談してみるようにする。AIをデータ分析のパートナーとするため、相談の仕方を工夫することも学んだ。正解を出すことを目的とするのではなく、自分の思考を広げるためのAI活用を身につけていきたいと思う。

データ・アナリティクス入門

営業部門と協働し、データ分析の切り口を探る学び

定量分析で何が重要? 定量分析の重要性と、分析では比較や仮説、目的が重要であることを学びました。実務においては仮説を立てる能力や、分析において適切な切り口を見つけることが求められます。このためには、分析対象に対して強い興味を持つことが大切だと感じました。 問合せ増加の施策検討 現在、私は担当しているWEBサイトからの問い合わせ数を増やすための施策検討を行っています。問合せの生データやサイトのアクセスログなど、使用可能なデータは整っています。また、SFAデータを分析し、2025年度の営業施策を検討中です。こちらについてもSFAデータにアクセスできる状況にあり、今後加工は必要ですが、元データは揃っています。 SFAデータ分析の進め方 まずは、SFAデータの分析から着手する予定です。SFAデータには多くの分析切り口が存在しますので、目的や仮説を明確にするために、いきなり手を動かすのではなく、営業部門の担当者を巻き込むことにします。具体的にはどういった分析が求められるのか、現場で役立つかどうかを相談することが大切だと考えています。

アカウンティング入門

アカウンティング初心者の挑戦から学んだこと

アカウンティングの考え方とは? アカウンティングについてほとんど分からない状態で受講を始めましたが、講師のガイダンスを通じて、どのように考え、どのように利用するのかが少し理解できた気がします。また、他の受講生も同じような目的で参加していることが分かり、これから一緒に学べることに楽しみを感じています。 多様な企業との関わりで得たいスキルは? 私は営業統括として多様な企業と接する立場にあります。経済状況の影響で業績が厳しい企業も多く、財務分析を正確に行い、各企業に対して適切な判断ができるようになりたいと考えています。今回学んだアカウンティングを通じて、企業の資金の流れや使用状況を把握し、現在の状況や将来の可能性を見極められるようになりたいと思っています。 基礎から実践までの道のりは? この6週間の講座では、アカウンティングの基礎を学ぶだけでなく、実践で活用できるレベルまで理解を深めたいと考えています。そのために、講師の指導だけでなく、共に学ぶ仲間たちと意見を交換し、自分の間違いも指摘し合いながら成長していきたいと思っています。

クリティカルシンキング入門

グラフの選び方で差がつく資料作り

グラフの選び方は? スライド作成に限らず、メールや文章作成時にも役立つポイントが多く含まれていました。特にグラフ作成においては、何を表現したいのかを明確にし、その目的に適したグラフを使用することが大切です。なんとなくでグラフを選ばず、読み手が一目で何を言いたいかが伝わるように意識します。 他者の視点を採る? 現在、市場分析でBIツールを使いながらグラフを作成しています。その際、どのグラフが最適かを考慮して選択しています。作成したグラフをスライドにするときには、シンプルなタイトルと内容を心がけ、全体がすぐに理解できるようにしています。しかし、作成者本人ではなかなか読み手の視点に立てないため、第三者にもスライドを確認してもらい、意見を収集しようと考えています。 どう伝えるのが良い? 伝えたい内容とその目的を整理し、漠然とした選択でグラフを使わないことが肝心です。読み手に過度な解釈を強いるスライドや資料、文章にはしないように心がけます。第三者にフィードバックを求め、修正を加えながら、伝えたいことが正確に伝わる内容に仕上げます。
AIコーチング導線バナー

「目的 × 使用」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right