データ・アナリティクス入門

仮説とデータで切り拓く未来

データ分析で何を学ぶ? 今週は、データ分析による業務課題の可視化や、仮説構築から分解・深掘り、施策立案に至る一連の流れを体系的に学びました。全体平均だけでは見えないグループごとの傾向把握の重要性や、セグメント別分析を通じてボトルネックやインサイトを抽出するプロセスが特に印象に残りました。具体的なケーススタディを通して、満足度や成果指標を分解することで課題の本質に迫るアプローチを体験できたことは非常に有意義でした。 営業分析をどう活かす? また、今回学んだ分析プロセスや分解思考は、自身の業務、特に営業活動にも応用可能だと感じました。たとえば、営業メンバーの訪問件数や提案内容、業界別の成約率、失注理由などのデータを収集・分解し、チームや個人、顧客属性ごとに傾向を分析することで、属人的な営業から再現性の高いプロセス型営業への転換が期待できます。さらに、成績上位者の営業プロセスを可視化してナレッジを共有することで、組織全体のレベルアップに貢献できると考えています。

データ・アナリティクス入門

平均だけじゃ見えない学びのヒント

平均値の弱点は? ビジネスや日常生活のさまざまな場面で代表値として利用される平均値ですが、実は大きな弱点があります。平均値はデータのばらつきを反映しておらず、同じ平均値でも、データの大半が平均値に近い場合もあれば、極端に大きな数値と小さな数値で構成され、平均に近い値が存在しない場合もあるのです。 重要要素は何? 苦情処理以外でもデータを活用する可能性は十分にあります。これまで、インフォメーションのヒットワールドでは似たような事例がいくつか見受けられましたが、どの要素が最も重要なのか、またすべてのデータを採用するのは現実的ではないと感じています。したがって、状況に応じてデータの加工が求められるのでしょう。 問い合わせ改善は? 一時的に問い合わせ内容を収集し、お客様が特に関心を寄せる内容を反映することで、その部分のサービス提供に工夫を凝らす考えです。さらに、第三者にこのデータを提供し、PADなどに入力することで、案内の効率化が期待できるでしょう。

データ・アナリティクス入門

仮説で描く未来の戦略図

仮説整理はどう進む? ビジネスフレームワーク(3C、4Pなど)を活用することで、なんとなくで仮説を立てるのではなく、複数の仮説をMECEに整理できるという認識が得られました。また、仮説には「結論の仮説」と「問題解決の仮説」の2種類があることを知り、仮説に対する考え方が大きく変わったと感じています。 課題解決は何を問う? マーケティング施策の企画段階では、まずお客様の課題が何であるかを明確にし、What、Where、Why、Howのプロセスに基づいた問題解決の仮説思考を用いることで、心に響く施策を考案したいと考えています。一方、振り返りの際には、施策の結果を踏まえた上で結論の仮説を用い、データを検証していくことが重要だと感じました。 計画実行はどう見る? 今年度の施策の振り返りと来年度の計画を進める時期にあたり、初めからデータを集計するのではなく、まず仮説を立て、その検証に必要なデータを収集・比較分析するアプローチを取り入れていきたいと思います。

戦略思考入門

競合を超える!戦略と分析の新発見

ターゲットと競合の意義は? 差別化戦略を考える上で、改めて「ターゲット顧客」と「顧客視点の競合」の重要性を認識しました。競合にばかり目を向けると、自社の本質を見失うことがあります。そこで、VRIO分析などのフレームワークを活用し、戦略立案や競合の把握に役立てることが重要です。 戦略実行の鍵は何? 経営層が策定した戦略を実行する場面が多くありますが、今学んだフレームワークを活用することで、戦略への理解を深めることができます。また、自分が収集したデータを効果的に活用し、それを他のメンバーに共有することで、組織全体を正しい方向に導く努力をしています。 業務で差をつける方法は? 具体的には、自分が担当する業務内で顧客と競合を見直し、現在の設定と比較して違いを見つけ出します。市場の変化を感じるだけでなく、フレームワークを用いて言語化し、その分析結果を組織へフィードバックしていきます。この考え方や動きを他のメンバーにも広げていくことを心掛けています。

クリティカルシンキング入門

データ分解で未来を切り拓く学び

データ分解のコツは? データを分析するときには、まず分解することの重要性を学びました。物事を分解する際には、次の三つのポイントが大切です。まずは手を動かすこと、機会的に分けないこと、そして複数の切り口で分けることです。また、MECEとは「もれなく、ダブりなく」切り分けられた状態を指します。分解の切り口には、層別分解、変数分解、プロセス分解があります。 売上数値の見方は? 自社製品の売上状況や他の薬剤の売上状況を記載した月毎のデータを用いることで、今後のアクションを検討する際に役立てたいと考えています。ただ単に数字の流れを追うのではなく、データを複数の切り口で分解することで課題を抽出します。 施設売上の課題は? 施設の売上状況を基に課題を探り、今後の行動を検討する際にこれを活用したいと考えています。従来の月毎の売上やシェアだけでなく、同種同効薬や関連薬剤のデータも収集し、季節別や医師の特徴(年齢や出身大学)、地域別などにデータを分解してみます。

データ・アナリティクス入門

A/Bテストで成果を見える化!

真因はどこにある? プロセスを分解し、問題がどこにあるのか、さらにその真因を掘り下げるアプローチは非常に重要です。このような手法により、具体的な対策が見えてきます。特に、A/Bテストを用いた評価方法は、複数の施策を公平に比較するために有効です。ランダム性を持たせつつ、できるだけ条件を同じにして施策をリリースし、実際の結果を基に評価することが求められます。 課題はどう捉える? 実際の業務では、A/Bテストを行う機会は少ないかもしれませんが、顧客の課題をプロセスに分解し、その真因を探りながら仮説を立てることは、多くの場面で有効です。このような手法で、顧客の表層的な課題だけでなく、プロセスの詳細まで深く掘り下げることが大切です。 データは信頼できる? そのためのヒアリングやディスカバーを繰り返すことで、有意義なデータを収集し、場合によっては実地での業務サーベイを行うことも検討します。これにより、定量的なメリットの根拠を構築することが可能になります。

データ・アナリティクス入門

データ分析で未来を描く方法

目的を明確にする重要性 目的を明確にすることは、分析作業の基本です。これまで私は、過去の経験に基づいたバイアスを持ちながら、取り組みやすい課題解決策から進める方法を取ってきました。しかし、バイアスを取り除き、基本に立ち返ることが重要だと感じます。分析では、比較や言語化が鍵となります。 数値化で課題を明確化 現状とあるべき姿とのギャップを分析し、比較することで、課題のレベルを数値化したいと考えています。業務レベルの改善や変革を推進するにあたっては、数値による判断材料の精度を高め、プロジェクト内での共通理解を促進し、推進の結果を最大限引き出したいです。 合意形成と重点課題の抽出 まずは、プロジェクトメンバーの間で目的を明確にし、合意形成を図ります。そのうえで、データの収集と加工を行い、比較分析により重点課題を抽出します。最後に、その分析結果を基にアクションプランを言語化し、業務レベルでアセスメントを実施して、体制、スケジュール、予算を計画します。

戦略思考入門

ハイエンド顧客を狙った眼科マーケット攻略戦略

顧客分析の重要性を再認識 マクロの視点で顧客を分析することの重要性を改めて学びました。優先順位を定量化することで、新たな注力分野が見えてくることを実感しました。日々の業務や顧客対応に追われがちですが、冷静に分析することで無駄な動きを減らせるかもしれないと考えました。 質重視の顧客ターゲティング 眼科クリニックの開業マーケットでは、総合メーカーのパッケージ提案によるディスカウント競争が激しいです。ただし、提供される顕微鏡の質は必ずしも高くないため、質を重視しない顧客はターゲットから外し、こだわりのある顧客に絞ってアプローチすることが効果的だと考えます。 大学病院戦略の必要性は? そのための提案根拠を定量化するために、外部および内部のデータを収集します。特にハイエンド市場を目指すには、業界で影響力のある大学病院戦略が重要です。大学病院の手術数や関連病院の数などの評価を定量的に行い、優先順位をつけてアクションプランを策定します。

データ・アナリティクス入門

新たな視点で挑む問題解決術

仮説はどう活かす? 今回の学びで、仮説は結論を導くだけでなく、問題解決に役立つ視点としての「問題解決の仮説」が存在することに気づきました。また、仮説には時間軸があることや、複数の仮説を立て網羅性をチェックすることで、偏りのない視点を保つことが大切だと理解できました。 データはどう扱う? また、データ収集においては、新たなデータを集めることに注目する一方で、手元にある既存のデータや一般に公表されている情報を活用する分析が軽視されがちである点に気が付きました。新しいデータの収集は楽しい面もありますが、一方で入手が難しい場合もあるため、状況に応じた柔軟な対応が求められると感じました。 手法はどう広げる? 現在、業務効率化のためにデータ収集を通じて行動様式の検証に取り組んでいますが、今後はデータ収集に限定せず、インタビューやアンケートなど多様な手法を組み合わせることで、より効果的な業務改善を目指していきたいと考えています。

クリティカルシンキング入門

データ分析で見つける、次の一手

分析の進め方はどう? 目の前の数字だけで判断しがちですが、一歩踏み込んで分析することで、より詳細で解像度の高い状況にたどり着ける可能性があることが分かりました。情報の収集とその情報の分析に工夫を加えることの重要性を学びました。 データ活用に自信は? 問い合わせ者データや来場者データ、購入者データなど、さまざまなデータを保有していますが、これらを有効に活用できていないかもしれないという良い意味での疑念を持ちました。それぞれのデータを分析して歩留まりの数や率を向上させるため、具体的な施策を行っていますが、より効果的な施策を実現するために、各段階での分析作業を実施する必要があると感じました。 改善点は見えてる? アンケートデータの分析(分解)を通じて、改善点を効果的に導き出すことができそうです。実施予定の施策の効率や効果性を向上させることができれば、得られる成果を今より大きなものに変えられるかもしれないと実感しました。

データ・アナリティクス入門

比較のレパートリーを増やす意味

分析の目的は何か? 人によって着眼点が大きく異なるため、自分が分析したい目的や伝えたい相手の視点に沿った比較対象を見つけることが非常に重要であると学びました。受講前は、分析手法やデータ収集、整理が重要と考えていましたが、実際には目的設定や比較軸の決定がより重要であると感じました。 営業での活かし方は? この知識は、他者との提案時の競合価格比較や、営業時の他社比較資料の作成に役立つと考えています。特に営業現場では、価格以外の定量的な部分でどれだけ差異をつけられるかが非常に大切です。このような場面で活用していきたいと思います。 比較軸をどう増やす? まずは比較軸のレパートリーを増やすことを目指します。今回の講座で学んだ、特定条件の有無による比較に加え、他の方の意見や視点を積極的に取り入れ、より多くの軸を自分の中に取り込んでいきたいです。そうして得た軸を活用し、より目的に合ったものを選定できるよう努めていきます。

アカウンティング入門

わかりやす会計が描く未来

説明はどう伝わる? 初回の講義冒頭で、「アカウンティングは人に分かりやすく説明されるものであり、決して難解で複雑なものではない」という話が非常に印象に残りました。世界中の企業で利用されている以上、誰にとっても明確で理解しやすいはずだと再認識でき、これまで漠然と感じていた取っつきにくさが和らいだように思います。 顧客情報をどう活かす? また、社内で新たなプロジェクトに参加する際、顧客の基本情報をリサーチするために今回の学びを活かしたいと考えています。顧客企業の基本情報や業界背景情報の収集に加え、財務データを正確に読み解いて自分なりの考察を持つことが重要だと思います。 財務分析は何が鍵? さらに、本コースの学びと平行して、クライアント企業の公開情報から直近の財務データを取り出し分析作業を進める予定です。さまざまな業界の企業データを比較し、業界ごとの違いや特徴を検証することで、より深い理解を得たいと思います。

「データ × 収集」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right