データ・アナリティクス入門

データ分析で結果を出すための工夫

データ分析の目的を明確に データ分析を行う際には、以下の点を重視する必要があります。 まず、分析の目的を明確にすることが重要です。分析の本質は比較にあり、適切な比較対象を選ぶことが求められます。そのためには、どのような項目をどのように分析するかという仮説を立て、それに基づいてデータを集め、分析することが必要です。そして、目に見えないデータや事象も考慮しながら、見せ方(例えばグラフなど)にも注意を払います。 マーケティング成果発表の準備は? 分析をする際の初めのステップは、「誰に」「何を」伝えるためにこの分析を行うのかを明確に意識することです。特に、次の期のマーケティング部門の成果発表で伝えるメッセージを考えるには、この意識が不可欠です。 来期施策に活かす分析のポイント 次に、来期の施策の布石となるメッセージを考えます。そのためには、まずどういうメッセージが良いかを考え、会社の方向性を確認します。その方向性とメッセージがつながっているかを検証した上で、どんな項目をどのように分析するのが適切かという仮説を立てます。実際にデータを集めて集計し、仮説の正しさを検証します。 このプロセスを通じて、有効と感じた施策や取り組みを数値的な裏付けをもとに発表し、来期の施策に活かしていくことが重要です。

戦略思考入門

効率的な体のしくみと戦略思考の共鳴

規模経済性の検証方法は? 規模、習熟、範囲の経済性は感覚的には理解できるが、実際にそれが本当に発生しているかをしっかりと検証する必要があると感じた。それには、多角的な視点と現状を把握する力が必要である。また、最近のネットワーク経済性についても、自分が使用しているサービスがニーズにマッチするように働いていることを改めて考えるきっかけになった。 人体のメカニズムとは何か? ふと、人間の体がいかに効率的にできているかについても改めて考えた。必要な時に神経経路を切り替え、食事をすれば消化酵素が出やすい副交感神経が働き、ここぞというときには交感神経が働いて活動に必要なものを動かす。この体のメカニズムは非常によくできていて、もし何か症状があればそれには原因があるという点で、戦略思考に似ている。このメカニズムを理解した上で自分の体に向き合うことができれば、健康感も一気に上がるのではないかと考え、これを健康支援に活かせそうだとも思った。 戦略思考をどう生かす? 上記の考えから、もう一度体の仕組みの基本を学習し直そうと思う。業務で新体制を作っているところだが、そこに戦略思考を取り入れて、まずはゴール設定と仲間との整合を優先的に行い、力を入れて進めていく。成功の姿を一致させることが重要だと感じる。

データ・アナリティクス入門

仮説と現場で読み解く数字の物語

現場で何が起きる? 平均値などの代表値を把握するだけではなく、現場で実際に何が起きているかを想像しながらデータに向き合うことが大切です。そのため、自分自身で仮説を立て、仮説検証型で分析を進めることが求められます。分析の目的に応じて比較する対象も変わるため、たとえば「夏の気温は本当に上昇しているのか」という問いに対して、単純に1年前のデータや他の地点のデータと比較するだけでは、十分な答えは得られにくいでしょう。 ビジュアルで何が分かる? また、代表値の理解をより精緻なものにするために、データのビジュアル化を試みることが重要です。第三者に伝えるときだけでなく、自分自身で数値を分析する際にも、数字だけでは見逃しがちな現場の情報に焦点を当てるため、ビジュアル化の活用を心がけましょう。 AI活用はどう役立つ? さらに、医療施設ごとの売上や従業員ごとの活動履歴など、大量かつ複雑なデータに関しては、定型的な加工に陥りやすい傾向があります。まずはデータの分布を把握するためのビジュアル化を行い、分析の目的に合ったデータの特徴を考察する時間を確保することが推奨されます。このプロセスにはAIの活用が有効であるため、迅速に作業に取り掛かれるよう、使用するプロンプトをあらかじめ保存しておくと便利です。

データ・アナリティクス入門

課題の核心に迫るMECE思考

原因を見極めるには? 問題の原因を分析する際には、まずプロセスごとに分解し、どこに問題が存在するのかをMECEの視点で明確に特定していく作業が重要だと学びました。このアプローチにより、原因分析なしにどのように解決策にたどり着くかが分からなくなる事態を回避できます。また、特定した原因が実際に問題の根本的な要因であるかどうかを検証するために、他の条件を極力同一に保った上で、原因がある場合とない場合の結果の違いを確認することが必要です。 なぜ原因を掘り下げる? 監査の現場において、課題を発見した際に「何が、どこで問題なのか」という点(WHAT・WHERE)だけを把握して満足してしまい、なぜその問題が生じたのか(WHY)まで掘り下げられず、結果として効果的な改善提案(HOW)がなされない場合があることを実感しました。今後は、プロセスに沿った課題の特定と原因分析により意識を集中させる必要があると感じています。 仮説検証をどう進める? 今後は、課題の特定及び原因分析の際に、MECEの視点をしっかりと意識し、問題の発生箇所と原因を的確に絞り込んでいきたいです。その際、立てた仮説を決め打ちにせず、データ分析を活用して客観的に検証することを心がけ、より精度の高い改善提案を実現していきたいと思います。

クリティカルシンキング入門

イシューを極める学びの旅

どのイシューに注目? 今回の学びで、フォーカスすべきイシューを正しく把握する重要性を再認識することができました。どのイシューに注力すべきか、そしてそのために何から取り組むべきかを明確にしなければ、成果に大きな差が生まれるという点は、今後の活動において大変参考になります。特に、ある有名ファーストフードチェーンの事例は、イシューの捉え方を考える上で非常に示唆に富んでいました。 エリアプランはどう整理? また、四半期、半期、年間のエリアプラン作成においても、この考え方は大いに役立つと感じています。エリアの現状や課題を正しく把握し、優先順位をつけること、さらには複数の解決策のオプションを検討することが重要です。顧客の反応を継続的に分析して、アクションプランを再構築し、必要に応じて追加検討を行う際にも、この学びは非常に活用できると考えています。 市場を多角的に見る? さらに、様々な角度から市場を分析することで、ターゲットとするイシューをより正確に把握する努力を続けたいと思います。仮説を立て、その検証結果をもとに改善を重ねるプロセスを通して、本当に必要な知識を身につけることが目標です。また、チーム内で得た知見を共有し、議論することで、さらに理解を深めることができると確信しています。

データ・アナリティクス入門

仮説×分析で開く解決の扉

仮説立案の基本は? 仮説には、結論に至る仮説と問題解決に焦点を当てた仮説の二種類があり、問題解決の仮説では「What(問題は何か)」「Where(どこに問題があるか)」「Why(なぜ問題が発生しているのか)」「How(どうすべきか)」の順序で検証することが基本と学びました。 フレームワークは効く? また、仮説を立てる際には、3C分析(市場・顧客、競合、自社)や4P分析(製品、価格、場所、プロモーション)といったフレームワークの活用が有効で、これにより具体的かつ詳細な仮説を構築しやすくなると理解しています。 効果検証はどう? 現在、交通系ICカードで決済するとポイントが10倍になるキャンペーンの効果検証に取り組んでおり、決済回数や決済金額の増加などを評価指標としています。この分析に際しては、問題解決の仮説を立て、3C分析や4P分析を積極的に取り入れることで、データ分析の精度を向上させることを目指しています。 分析精度を上げるには? 所属部署では専門のデータ分析担当者がおらず、これまで独学で自己流に分析を行ってきました。今回学んだ仮説の立て方やフレームワークをさらに活用し、数値の取り方や検証方法を体系的に整理することで、分析の精度を一層高めたいと考えています。

デザイン思考入門

失敗も踏み台に!シンプル開発の現場

プロトタイピングって何? プロトタイピングでは、①目的を明確にする、②適切な要求を抽出する、③適切な時間を投入するという点を学びました。大学の授業は1科目が15回で構成されているため、毎回がプロトタイピングの検証の繰り返しといえます。大幅な修正を毎回行うと、逆に学生の混乱を招く恐れがありますが、これまで以上に学生の反応に敏感になり、改善を重ねられると感じました。 なぜ凝りすぎる? プロトタイプの作成過程では、どうしても機能を増やしたり、完成品に近づけたいという衝動に駆られます。しかし、ユーザーからフィードバックを得るという本来の目的を考えると、あまり凝りすぎないことが大切だと思いました。実際、下手な漫画を用いたところ、その下手さが逆に興味を引き、フィードバックを得る結果となった経験があります。講座で紹介されていたように、本質的な機能に絞り、“Simple is best”の姿勢で臨むことが重要だと感じます。 本音を出す環境は? また、プロトタイプによる検証は、自分のアイデアが外部の批判にさらされるという意味でも、デザイン思考の醍醐味を味わえるプロセスだと思います。ただし、場合によっては意見を控えるユーザーも存在するため、誰もが本音で意見を言える環境作りが必要だと強く感じました。

データ・アナリティクス入門

データから学んだストーリー分析の重要性

問題解決の4ステップは? 問題解決には、what(何)、where(どこ)、why(なぜ)、how(どのように)の4ステップがあります。経験や勘に頼らず、まずは事象をMECE(Mutually Exclusive, Collectively Exhaustive)に分解することが根本的な解決につながります。 分析のストーリーは重要? データを目の前にして即座にグラフ化したり、平均値や割合を出すのではなく、「なぜそうなったのか?」というストーリーを持って分析することが重要です。 データ取得の企画段階とは? 今後進行する実証実験の検証項目を明確にするため、企画段階からデータ取得方法を組み込む必要があります。また、マーケティングインテリジェンスのグループに異動するにあたり、ネット上のデータを鵜呑みにせず、なぜそうなっているのかの背景をシステマチックに考えることが大事だと感じました。 実証実験のゴールは? 現段階で検証項目の洗い出しは終わっているため、最終的な実証実験のゴールと、理想的なデータを意識しながら、今月中に取得方法を検討します。また、市場調査ではデータだけでなく、なぜそのようなデータが集まったのかについて、社会動向をチームメンバーとディスカッションする機会を設けます。

マーケティング入門

顧客の本音を探るテクニックを学ぶ

顧客の真のニーズとは? 顧客の真のニーズを探り出す方法を学べてよかった。新事業において仮説を検証するためにヒアリングなどはよく実施するが、質問項目や聞き方によっては答えを誘導してしまい、真のニーズを引き出すことは中々難しいと感じている。また、現在携わっている新規事業のプロジェクトが、顧客の立場や視点に立って考えることができていないことに改めて気づいた。今後は、カスタマージャーニーを実践し、本当に価値のある事業作りを目指していきたい。 行動観察で何が見える? 行動観察やデプスインタビューは、実際に価値検証を行う際に有効であると感じた。自分が顧客として考えたときに、どのような企画・事業であればビジネスとして成立するかを改めてチームメンバー全員で考えていく必要があると感じたため、これを実践していこうと思う。 今後の具体的な行動は? 具体的な行動としては以下の3つを考えている: 1. チーム内でディスカッション時間が明らかに少ないため、上司に相談して改善を図る。 2. 顧客のペインポイントが何であるのかを改めて議論し、現在の方向性が正しいかを確認する。 3. 新規の顧客に対するヒアリングを実施する。 これらの取り組みを通じて、真に価値のある新規事業を作り上げることを目指していく。

データ・アナリティクス入門

プロセス分解で見つけたヒント

なぜ分解して考える? プロセスを分解して問題の本質に迫る手法について、非常に分かりやすい事例から学ぶことができました。特に、採用プロセスの一部である中途採用面談や、顧客への提案における在庫差異の問題解決に、このアプローチを活用できると感じています。また、ABテストにおいては、条件をできる限り同一とし、検証範囲を絞るための仮説設定が重要である点も再認識しました。 採用面談、何が問題? まず、中途採用面談に関しては、自身が関与する採用活動において、プロセスのどの部分で問題が発生しているのかを明確にするため、面談調整に要する日数と採用結果の情報を人事部から収集することを検討しています。この情報をもとに、面談調整に時間がかかる原因を特定し、改善策を提言することで、採用率の向上を図ることができると考えています。 在庫の差異、どう解決? 次に、顧客への提案、特にシステム間の在庫差異に関する課題解決では、既に現状の業務プロセス分析は実施していますが、課題が発生しているプロセスの粒度が細かすぎるため、より単純化した形で説明する必要性を感じました。問題となりうる箇所を明示した上で、システム改善または運用プロセスの変更のいずれかを提案し、顧客にとって最適な解決策を提示していく考えです。

クリティカルシンキング入門

問いをクリアにする思考術の大切さ

なぜ問いを意識する? 日常的に、現在の自身の目的や問いを意識しているつもりですが、十分ではないと感じています。特に意識したいのは以下の2点です。まず、本当にその問いが正しいのかを検証すること。そして、その考え方や作業が問いに沿っているのかを確認することです。 議論はどう整理すべき? この問いの重要性については、あらゆる業務(資料作成、メール、周囲とのディスカッション)に活用できると考えています。特にディスカッションでは、議論が発散することがよくあります(それが目的の場合もありますが)。これは、そもそもの問いが不明確であったり、各人が立てている問いにばらつきがあることが原因と考えられます。そのため、議論をより円滑で意味のあるものにするために、「我々が目指すべきゴールは何か」という問いを、自分や周囲に問いかけるようにしたいと思います。 どう問いを明確にする? 最初に行うべきは、自分の問いを可視化し、明文化することです。そして、その問いが適切かどうか内省し、必要であれば同僚と確認し合うことにしたいと考えています。問いを明確にするためには構造化が重要だと考えており、現時点ではその力が十分でないため、構造化の学習(書籍を読む、試してみること)も並行して行っていきたいと思います。

データ・アナリティクス入門

論理で拓く未来への一歩

現在の状況はどう評価? 問題解決には、まず最初に現在の状況と理想とのギャップ、つまり「あるべき姿」と「現状」の差を明確にすることが必要です。このギャップは、分析の際に数値化することで、問題の規模や深刻度が具体的に把握できます。 問題発生の場所は? 次に、問題が具体的にどこで発生しているのかを検証します。問題を細かい要素に分け、見なくてもよい部分を除外することで、焦点を絞りやすくなります。 原因は何だろう? その後、なぜ問題が発生しているのか、その根本原因を徹底的に分析します。そして、最後のステップとして、どのように解決策を実行していくかを具体的に考えます。ここでは、ロジックツリーやMECEの考え方を活用することで、多角的な視点から検討し、説得力のある解決策をまとめることができます。 解決策はどこから? この問題解決の手法は、売上の予算と実績の差異を説明し、対策を検討する際に非常に有効です。問題解決のステップを意識することで、効率よく課題に取り組むことができると感じています。また、これまであまり活用してこなかったロジックツリーやMECEの手法も、論理的な考え方を鍛えるために必要であり、簡単な分析にも応用することで、次第に使いこなせるようになりたいと思います。

「本 × 検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right