デザイン思考入門

試行錯誤が導く新たな一歩

プロトタイプはどう活かす? 業務において、プロトタイプは新しいプロセスやアプリケーションの原型として位置づけられるため、本番の製品やサービスの一部と見なして、開発に過度の時間や労力をかけてしまい、せっかく作り上げたプロトタイプを無理にでも活かそうとしてしまうことがあります。しかし、プロトタイピングの本来の目的は、具体化されたアイデアに対するユーザーのフィードバックを得ることにあるため、効率的に、何度もプロセスを回すことを意識する必要があります。 評価の真実は? 思い描くプロトタイピングのシーンでは、手間をかけて作ったプロトタイプに対してユーザーからの評価が必ずしも期待通りでない場合も考えられます。このとき、単にプロトタイプの作り方が悪かったと考えるのではなく、そもそもの発想や課題定義に問題があった可能性を検証することが重要です。デザイン思考の各ステップにおいては、できる限り手戻りが発生しないよう注意深く進める工夫が求められる一方で、うまくいかなかった場合には直前のプロセスだけに原因を求めず、必要に応じて大きく方向転換する決断力も大切です。 過程重視の意味は? また、「プロトタイプ」と聞くと、自分のアイデアに対する試作品そのものに注目してしまいがちですが、実際にはユーザーからのフィードバックを得る過程全体を重視することが肝要です。そのため、単なる試作品の開発にとどめず、評価を得るまでのプロセス全体を意識した「プロトタイピング」に取り組んでいくべきだと考えています。

データ・アナリティクス入門

仮説の問いで開く成長の扉

仮説をどう言語化する? データを見る前に「こうなりそう」と感じるのは、すでに仮説を持っている証拠だと感じます。経験や直感から「この傾向があるかも」と思うことが、後に重要な指標を絞り込むための手がかりとなります。そのため、仮説をしっかりと言語化し明示することはとても大切です。 仮説検証の効果は? 仮説が明確であれば、どの指標に重点的に注目すべきかが分かり、仮説が外れた場合でも「なぜ違ったのか?」という質問が自然に浮かび、スムーズに分析の焦点を絞ることができます。こうした仮説検証のサイクルを回すことこそが、データ分析の醍醐味であり、成果につながると考えています。 設備トラブルの影響は? 実際、稼働分析を日常的に行う中で、「おそらく設備トラブルの影響で停止が増えたのではないか」という仮説を立て、その検証に利用するデータを慎重に選定しながら、表面的な課題ではなく本質的な改善ポイントにたどり着こうとしています。 なぜをどう掘り下げる? また、分析業務において「なぜ?」と問いを繰り返すことを意識しているものの、これまで1~2回の掘り下げで思考を止め、表面的な原因に留まってしまうことが多かったと自覚しています。しかし、データ分析は正解のない問いに対して行うものであり、仮説や着眼点の精度が成果を大きく左右します。そのため、日常業務や分析の過程で「なぜを5回」繰り返すことを意識し、仮説が外れたときもすぐに切り替えず、なぜ違ったのかを徹底的に深掘りすることが重要だと感じています。

戦略思考入門

経営資源を活かし切る戦略的思考とは

ゴール達成の方法は? 目指すべきゴールを明確にし、可能な限り省エネでそのゴールに到達する方法を見極める。戦略的な行動をとるためには、現経営資源を与件として、最速のゴール達成(顧客への最大の価値創出)のための道筋を見つけることが肝要だということを学びました。そのためには、数多ある道筋(取り組み)の中から取捨選択および優先順位付けを行う必要があり、たとえ必要十分な情報が揃わなくてもハイサイクルで行う仮説検証を前提とする仮説思考で、複数の視点に基づく明確な判断基準を持つこと、ならびに投資対効果を意識することが重要です。 中期計画にどう活かす? 次期中期事業計画の策定時に、学んだ内容を活用したいと思います。「目指すべきゴールを明確にする」「やらなくてよいことをしない」「独自性(強み)を持ち自覚する」そして戦略の構造化を図ることが大切です。戦略的な行動をとるためには、有限である現経営資源を如何に活かしきるかが重要です。そのために、「やらなくてよいことをしない」を基に判断基準を明確にし、周囲の協力を得つつ、関係者と共に「ムリ・ムダ・ムラ」を意識しながら、投資対効果の観点から取捨選択および優先順位付けを立案します。 成功のカギとなる点は? 以下の点を意識して立案したいと思います。 ・仮説思考を活用する ・判断基準を明確にする ・投資対効果を意識する ・その取捨選択が本当に顧客への価値提供や強み(独自性)の発揮に繋がっているか ・「やらない場合」「やる場合」の比較検討ができているか

リーダーシップ・キャリアビジョン入門

リーダーシップ変革への挑戦!

指示の基準を変える理由とは? これまで私は「仕事の難易度」や「任せる人のスキル、経験」といった基準で指示を出していました。しかし、「環境要因」や「適合要件」という観点から再考することで、より深い理解が得られると感じています。また、マネジリアルグリッドという分析方法を知り、自分自身だけでなく、部下や同僚、上司の理解にも役立つと実感しました。リーダーシップとは直感に基づくものが多いと思っていましたが、基本的な理論を学ぶことで基礎力を高めることが重要だと考え直すことができました。 目標達成に向けた具体的なアプローチは? 下半期が始まる中で、具体的な目標を立て、その取り組みの必要性を明確に説明することで、変革を推進する姿勢を示したいと考えています。その際、各目標達成に必要な「環境要因」と「適合要件」を検証し、条件適合理論に基づいたリーダーシップを使い分けていきたいです。また、営業部門として達成すべき目標が多いため、メンバーにリーダーとしての役割を配分する必要があります。今回学んだ理論を活かし、繰り返し説明することで自分自身のスキルとして身につけていきたいと考えています。 変革を実現するための方法とは? 直近の下期方針説明会では、中長期ビジョンを示し、変革を促す取り組みを打ち出すつもりです。変革を実現するためには、指示型でゴールを設定し、具体的な活動を決定することが重要です。また、定期的な会議や1対1のミーティングを実施し、状況確認を行う中で、褒めることを実践していきます。

データ・アナリティクス入門

仮説思考で見つける学びの道

学びの目的は何? ライブ授業を受けて、これまでの学びを振り返ることができましたが、なお十分に理解しきれていない部分もあり、実際に活用するイメージがまだ明確ではないと感じました。特に、データ分析に着手する前に「目的」や「仮説」が重要であるという基本原則をしっかりと自分の中に落とし込み、何のために分析を行うのかを意識する必要があると思っています。 仮説検証の流れは? 分析のプロセスは、まず仮説を立て、それを検証するためにデータの収集や加工を行い、そこから新たな発見へと結びつける流れであることを再確認しました。データそのものが分析の起点になるのではなく、あくまで仮説を検証・裏付けるためのツールとして位置づけ、目的と手段が逆転しないように意識することが大切です。 仮説思考で解決? また、業務上で大量のデータ分析に直接接する機会がなくても、さまざまな場面で問題解決が求められることは事実です。こうした状況においては、仮説思考に基づいたアプローチで検証を進めることで、課題解決に向かう思考プロセスを常に意識する必要があると感じました。 思考プロセスを活かす? さらに、データアナリティクスの思考プロセスを基本に据え、テクニカルな側面に偏ることなく、仕事や日常の課題に取り組む際にもこのプロセスを意識することが重要だと思います。直接的な事例に触れる機会が少なくても、まずは解決すべき課題に向き合う際に、今回学んだ思考のプロセスを活かして取り組む姿勢が大切だと感じています。

データ・アナリティクス入門

分析で開く意思決定の未来

仮説検証の視覚化は? ライブ授業では、これまで学んできた課題の特定方法や仮説の設定、結果の検証といったプロセスを再確認することができました。特に、仮説検証の成果をどのように可視化するかについては、参加者の意見を聞く中で、棒グラフや円グラフ以外にも表現方法が存在することを知り、新たな視点を得ることができました。また、限られた分析時間の中で、本当に必要な分析を見極めることの重要性を改めて実感しました。データが手元にあると分析したくなりますが、何のために分析するのか、得られた結果をどう活用するのかを常に念頭に置いて進めるべきだと感じました。 分析目的と改善は? 講座を受講する前にデータ分析を学ぶ目的は「意思決定に活用するため」であり、その目的は6週間の学びを経ても変わっていません。授業内ではマーケティングに関する事例も取り上げられましたが、現業務において活かす機会は少ないと感じます。一方で、A/Bテストや4P分析は業務改善のための改善案策定に、また相関分析は将来の経費推計に役立つと考えています。 何かを決定する際は、まずデータ分析で解決可能かどうかを検討しています。その際、何のために分析を行うのか、何を明確にするのかを設定し、ただ単にエクセルでグラフを作成するのではなく、その手法が最適かどうかを熟慮することを習慣にしています。また、年1回の定例報告の場合、長年変わっていない報告形式も多いですが、可能な範囲でより伝わりやすい形式に改善していくことが重要だと感じています。

マーケティング入門

対話で創る本物の体験

体験の差別化は? 「体験を考える」というテーマを通じ、ただ優れた商品を提供するだけでなく、その商品を通して得られる独自の体験が差別化につながるということを再認識しました。具体的には、個々の商品に飛び抜けたものがなくても、全体で見ると顧客が大満足しているという事例から、唯一無二の体験を提供できることの重要性を感じました。 一人だけでは? また、総合演習では、顧客視点で考える難しさを痛感しました。一人で考えを広げるには限界があるため、チームでの意見交換やヒアリング、アンケート、さらに顧客の行動観察など、さまざまな情報収集が必要だと実感しました。 顧客の本音は? 今後は、クライアントの心理を的確に捉え、常に顧客の立場に立って何が求められているのかを考えながら、対話や観察を行っていきたいと思います。私たちの商品を単に売るのではなく、顧客にとって「必要なもの」と感じてもらえるよう、デザインやネーミングにもこだわっていく所存です。 価格競争を避ける? さらに、無駄な価格競争を回避するため、市場分析のフレームワークを活用し、ターゲットを明確に絞り込んで自社の強みを存分に発揮できる商品作りに取り組みたいと感じました。 顧客体験の検証は? 訓練項目としては、まず顧客がどんな体験を望んでいるのかを考えること、次に売れない商品がどのような体験につながるのかを検証すること、そして、全体を俯瞰して良い体験を生み出す方法を模索することが挙げられます。

データ・アナリティクス入門

まずは基本!仮説で切り拓く学び

仮説はどのように考える? 仮説を考える際には、複数の仮説を立てることと、それぞれの仮説に網羅性を持たせることが重要です。また、反論を排除するためにも必要なデータを集め、仮説同士を比較検証できるようにすることを忘れてはいけません。 仮説定義はどうなってる? ビジネスの現場における仮説とは、ある論点に対する仮の答えを示すものです。仮説は、目的に応じて「結論の仮説」と「問題解決の仮説」に大別され、時間軸によって仮説の内容が変化します。 戦略はどう変化してる? マーケティングにおいては、プロモーションの戦略がIT関連の技術発展によって大きく変動する現状を踏まえ、トレンドを正確に抑えることが重要です。同時に、顧客満足度を非常に高いレベルに引き上げることでブランド価値を高めることが求められます。 実施前に何を検証すべき? 実際、分析の段階で仮説を立てずに作業してしまうことが多いと感じました。そのため、より網羅的に情報を確認するためにも、クリティカルシンキングを意識することが有効だと実感しています。これまでフレームワークの活用に対して懐疑的な面もありましたが、まずは基本に立ち返ることが大切だと感じました。 新施策の仮説検証は? 新しい施策を進める際には、4Cの視点を取り入れて仮説を立て、その仮説に基づいて必要なデータを収集することが有効です。データ収集の際は、自己のバイアスに捉われることなく、網羅的な情報収集を心がけるよう努めています。

データ・アナリティクス入門

大学生活のデータ分析で見えた成長のカタチ

仮説立てに必要な視点とは? 仮説を立てる際には、先入観に囚われず、考えられるあらゆる要素を踏まえることが重要だと感じました。これまでの経験も無論大事ですが、現状のデータを新鮮な目で眺めることが重要だと思います。 仮説が抱える落とし穴は? また、仮説とは自分で仮の答えを設定すること、という点についても非常に腑に落ちました。それというのも、仮説を立てたとしても、それが必ずしも現状の問題解決になっていないことがあるからです。 大学で得る成長とは? 大学での学びについては、一般的には学生の成長にさほど寄与しないと指摘されることがあります。しかし、それが本当なのか、またそうだとしたら何が原因なのかを検証したいと考えています。 データ分析で何を探る? 最初の仮説として、「大学での4年間は、何らかの形で学生の成長に貢献しているはず」という仮説を立て、大学内のあらゆるデータを分析していきます。 学生の成績変化をどう評価する? 具体的には、入試の時の成績とGPAを比較し、著しく成績が伸びた学生をピックアップします。彼らにアンケートを実施し、4年間のパフォーマンスを学業、学業外活動、就職結果などの要素に分けて点数を付けてもらいます。 インタビューで何を聞く? 最後に、各数値の典型的な学生をピックアップし、個別インタビューを行う予定です。

データ・アナリティクス入門

仮説で見つける新たな視界

どうして複数仮説が必要? 結論を先に決めてしまわず、はじめから複数の仮説を立てることが大切です。それぞれの仮説に網羅性を持たせ、偏りのない検証を心がける必要があります。 どのフレームが使える? 仮説を立てる際には、3Cや4Pなどのマーケティングフレームワークを活用することが有効です。他のビジネスフレームワークも使いやすさを考慮して試すと良いでしょう。さらに、仮説を検証するためのデータが恣意的になっていないか注意することが重要です。 実績の要因は何? 実績に対して要因を探る際、ベテランの経験則に基づく仮説が採用されやすい傾向があります。しかし、対案を立案しデータによる検証を実施することで、本当にその仮説が正しいのか確認する必要があります。また、仮説を証明するためだけのデータに依拠しすぎないよう注意してください。 急な依頼はどう考える? たとえば、上司から急遽、ある実績に対して1つの仮説だけを検証するよう依頼されたケースがありました。その際、他の分析結果ではその仮説の寄与度が低いことが示されており、また分析結果が活かせるのは1年後という説明から、急いで1つの仮説だけを検証する必要はないと理解してもらいました。 理想と現実は? このように、上司がある実績について理想的な状況を望んでいる場合でも、実際には複数の説明変数が影響していると考えられます。したがって、必要なデータを揃えて十分な分析・検証を行うことが求められます。

データ・アナリティクス入門

仮説で切り拓く学びの軌跡

仮説の基本的な意味は? 仮説とは、ある論点に対する一時的な答えを意味します。仮説を立てることで、説得力が向上したり、日々の課題に対する意識が高まったり、業務のスピードアップにもつながります。仮説には、結論に向けたものと、問題解決のための「どこで」「なぜ」「どうやって」といったステップに基づくものがあります。また、時間の経過により仮説の内容が変化することも考えられます。 仮説検証はどう進む? 仮説を構築する際には、まず複数の仮説を立て、各仮説が網羅的であるかを確認することが重要です。思いつきや直感、単一の数字だけで決めつけず、様々な切り口やフレームワーク(たとえば4Pなど)を用いて検証することが求められます。さらに、必要なデータが何か、どこにあるかを探りながら、証明可能なデータやアンケート、インタビューなどを通じて仮説を補強することも一つの手段です。 過去経験はどう活かす? これまでの経験や目の前の数値だけに頼る傾向がありましたが、初めに様々な可能性を洗い出しておくことで、全体のスピードアップや説得力が大幅に向上することを実感しました。また、3Cや4Pといったフレームワークは、実際の業務でどのような視点で分析を進めるべきかを検討する上で有効であると理解できました。調査依頼を受けた際には、目的に応じた適切な指標を考え、複数の仮説を立てることで、分析の軸を明確にし、必要なデータの所在を把握していくことが大切だと感じています。

クリティカルシンキング入門

数字を切り口にする新発見のコツ

なぜ切り口が大切? 数字を分解して考える際の重要なポイントを学びました。どのように分ければ情報がより明確に見えるか、多くの切り口を持つことが重要です。例えば、年代別に分ける際に、単純に10代、20代、30代という機械的な分け方をしていましたが、18歳や22歳で分けると、高校生や大学生といった具体的な層が見えてきます。また、ある傾向が見えた場合でも、そこで分解を止めずに「本当にそうか?」と疑問を持ち、他の切り口からも考えてみることが重要です。分解して傾向が見えなくても、別の視点で再考することが大切で、迷わずまずは行動することが必要です。 市場分析はどう進める? 現在、数字を用いた分析の機会は少ないですが、今後開発を進めている製品の市場分析においては、MECE(漏れなくダブりなく)を意識して全体を網羅した切り口を見つけ出し実践したいと考えています。都市別や規模の大きさなど、思いつく限りの切り口を活用し、まずやってみることが大事です。仮に傾向が見え始めても、思考を止めずに「本当にそうか?」と他の視点から再度検証します。 なぜ議論を重ねる? 常にどのような切り口があるかアンテナを張り、プロジェクトメンバーとの議論では、定量的なものだけでなく、定性的なものをどう分解するとどう見えるかについても意見を交わし、考え抜くようにしたいです。また、一度導き出した結論も「本当にそうか?」の問いを繰り返し再考し、慎重に判断するよう心がけます。

「本 × 検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right