データ・アナリティクス入門

学びの武器:ロジックツリーとMECE活用法

ロジックツリーとMECEの理解を深める 今回の学びで【ロジックツリー】と【MECE】についてしっかり理解することができました。これまで漠然と理解していたものの、具体的な分析には活用していなかったため、今後の分析に役立てたいと思います。ただし、【感度の良い切り口】を選ぶことが実践では難しいと感じており、特訓が必要だと考えています。今後は、これまでの成功と失敗の分析例を見比べ、感度の良い切り口を探っていきたいと思います。 分析力を向上させるための反省点 私は構造的に物事を分解して考えることが苦手で、【ロジックツリー】や【言語化】によって頭の中で考えていたことを正確に表現できていませんでした。その結果、要因分析の精度が不足していたと反省しています。この学びを経て、より効果的な分析ができるよう努める所存です。もともと時間がかかることもありますが、繰り返し実践し、自分のものにしていきたいです。 実践によるスキルの習得 早速、【ロジックツリー】や【MECE】を日々のデータ分析業務に取り入れ、課題解決に役立てたいと思います。これまでなんとなく分析しており、【what】【where】【why】【how】を頭の中で考えながらも【可視化】や【言語化】していないことが原因で、正確性に欠けていました。恐らく、【感度の良い切り口】が間違っていた可能性もあると反省しています。今後は学んだことを実践に取り入れ、分析の精度を高めていきます。 日々の実践がスキルアップの鍵? 日々の分析で【ロジックツリー】、【MECE】、【感度の良い切り口】を身に付けるためには、繰り返しの実践が大切です。そのために、同僚が利用している【ミニホワイトボード】を購入し、何度も書き出していくつかの切り口を見極めていこうと思います。確定したら、エクセルに【背景】【目的】【仮説】【ロジックツリー】【5W1H】をまとめ、事前に整理した資料をもとに適切なデータを見極めていきます。自分なりの考察をまとめた後は、依頼者と振り返り議論を通じて、より正確な要因分析が行えるよう努めます。

データ・アナリティクス入門

数字とグラフで見える成長

比較や仮説の意義に迫る? 本教材では、比較や仮説思考の重要性を改めて確認しました。大量のデータを扱う際、数字化しグラフなどで可視化することで、情報がより明確に把握できることが示されています。 代表値はどう選ぶ? 代表値として、単純平均、荷重平均、幾何平均、そして中央値が挙げられました。それぞれ、状況に応じた使い分けが必要です。たとえば、ばらつきが大きい場合や外れ値がある場合には中央値が適している一方、成長率などの変化割合を捉えるためには幾何平均が有効です。 標準偏差を理解する? また、データのばらつきを理解するためには、標準偏差が重要な指標となります。標準偏差は、平均値との差の二乗和の平均の平方根として計算され、数値が小さいと密集、大きいとばらつきがあることがわかります。正規分布の場合、平均値から標準偏差の2倍以内に約95%のデータが収まるという2SDルールも、実感としての起こりにくさの目安となります。 グラフの効果は何? まとめとして、代表値とばらつきを用いてデータの特性を把握し、グラフなどの可視化を利用すると、非常にわかりやすく情報を整理できることが強調されていました。具体例を用いた説明は非常に効果的で、内容が実践的に応用できる点も評価されます。 荷重平均の活用は? さらに、データ可視化の具体的な利点や、実際の場面で荷重平均をどのように活用するかについて、さらに考えを深める問いが提示されています。これにより、自らの分析手法を実践的に応用する視点が求められています。 実務でどう活かす? 最後に、実務への応用例として、メンバーの時間外労働の管理が取り上げられました。労働時間が所定の範囲内に収まるよう、グラフを用いて傾向を把握する方法や、外れ値がある場合に特定の商品のデータを除外して全体の傾向を見る手法が紹介されました。また、エクセルを活用して各メンバーの代表値やばらつきを算出し、分析の特性に応じた手法が使われているかを確認することで、より実践的なデータ分析支援に繋げる取り組みが示唆されています。

データ・アナリティクス入門

繰り返しが生む新たな発見

繰り返しの学びって? 全体を振り返ると、何度も同じ内容について整理し、記述を繰り返すことが学習において非常に重要であると実感しました。このプロセスの意味を学習テーマとは別に考えることで、新たな学びを得る機会となりました。 仮説疑問はどう? コースの初めに、「仮説とは何か」という疑問を持ち、データ分析のアプローチが状況により異なることを知りました。すでにデータが存在する場合と、データが無い場合では、分析に至る過程や組み立て方が大きく異なります。 既存データの活用は? 先にデータが用意されている場合は、目的を明確にした上で、データの特徴を探り、どの要素を比較するか、どのような傾向や動きを把握するかを平均、標準偏差、相関などの分析手法を活用して明らかにしていきます。その結果、見えてきた情報を体系的に整理することが可能となります。 無データの場合は? 一方、データが先に存在しない場合は、まず解決すべき課題や手がかりを見つけ、その観点に沿ったデータを収集します。具体的には、What-Where-When-Howという視点を順に確認し、マーケティングの基本的な枠組みを参考にしながら、適切なデータを取得し、課題を明確化するプロセスを進めます。その際、解決策や成功の可能性も同時に検討していきます。 記述重ねる理由は? また、同じ質問に何度も答え、記述を重ねる過程の意義についても改めて考えさせられました。学んだ内容が蓄積される中で、実際の業務にどのように適用できるかを具体的にブラッシュアップする必要があると感じました。 分析手法の見直しは? Q1では、分析に対する取り組み方を整理することができました。特にデータが既にある場合は、データを加工するための手法と知識が不可欠であることを再認識しました。しかし、今回のコースではその実践的な部分までは触れていなかったため、過去の振り返りと同様の記述となりました。今後は、実際に手を動かしてデータを扱う内容を学ぶ必要があると感じました。

データ・アナリティクス入門

フレームで切り拓く問題解決

分析で何が分かる? この講義では、業務の問題解決のために「分析」を徹底的に学び、質の高い意思決定スキルを向上させることがテーマでした。分析とは、比較を行うことにより現状を理解する手法であり、問題解決に取り組む際は、まず解決すべき問題を明確にし、状況の全体像を把握する必要があると感じました。 仮説はどう練る? さらに、問題点の仮説を立て、どのようなデータを用意し、どのように加工して何を明らかにするかというストーリーを作ることが重要です。闇雲に分析を進めるのではなく、グラフを活用するなどして、周囲への説明が分かりやすくなる工夫が求められます。 どんな枠組みを活かす? また、今回の講義では様々なフレームワークを活用する手法についても学びました。ロジックツリーを用いてMECEに問題を絞り込む方法、定量分析の視点として何を比較対象にするかやどのグラフを使用するか、さらにデータを平均値や中間値に集約して分析する方法など、具体的なアプローチが紹介されました。相関係数や度数・時系列・パレート分析といった数字に基づいた分析の手法や、3Cや4Pの軸で仮説を広げる方法にも触れ、ビジネスにおける仮説には結論の仮説と問題解決の仮説の二種類があることも学びました。 実践でどんな変化? 私は営業支援の仕事に従事しており、データ分析を通じた得意先への課題解決提案を今後も継続していく考えです。これまで自己流の分析やストーリーの立て方では、汎用性に欠ける面やサポートのしづらさを実感していましたが、本講義で学んだフレームワークや定型の分析手法を取り入れることで、体系的に仕事を進められるようになりました。特に、若手メンバーへのサポートにも大いに役立てたいと考えています。 今後の対策は? ただ、問題解決の4つのステップに対して、それぞれに合った分析手法やフレームワークの整理がまだ十分にできていないと感じています。今後は、皆さんと議論しながら確認する機会を持ち、より深く理解を深めていきたいと思います。

データ・アナリティクス入門

平均だけじゃわからない、データ物語

代表値の選定はどう? データ分析の学びで、まず印象に残ったのは代表値を考える際に、単純平均だけではなくデータのバラつきを十分に検討する必要がある点です。普段便利に使われる単純平均ですが、その値が適切な代表値になっているかは、データの分散や偏りを合わせて考えなければならないことに気づきました。具体的には、データの性質に応じた代表値として、加重平均や幾何平均、極端な値の影響を抑えた中央値など、さまざまな手法を学びました。 標準偏差はどう捉える? また、バラつきを評価するために、標準偏差(SD)や2SDの考え方を改めて認識することができました。統計的な手法を用いることで、人が感じがちな「恣意的な操作があるのでは」という疑念に対しても客観的な根拠を示すことができる点が非常に興味深く感じられました。2SDの範囲が極端な値を排除する役割を果たすという考え方には納得できるものでした。 評価の分散はどう見る? 業務では主に人事データや研修後のアンケート結果を扱う中で、10段階評価の平均値のみならず、標準偏差や中央値を併せて分析する重要性を再認識しました。例えば、講評の平均値がある数値であっても、評価が全体的に均一なのか、それとも高評価と低評価に二極化しているのかは、ばらつきの分析なしには判断できません。標準偏差が大きい場合は評価が分散し、逆に小さいと評価が平均近くに集中していることが明確になるため、データの分布や偏りを把握する上で非常に有用です。 集計手法はどう進める? この手法を実践するために、まずは研修のアンケート結果をExcelに集計し、標準偏差(STDEV.PまたはSTDEV.S)や中央値(MEDIAN関数)を計算します。次に、標準偏差が大きい場合にはヒストグラムを用いて評価の分布を視覚的に確認し、外れ値が全体に与える影響についても検討します。こうした分析を定期的に行うことで、研修の質や受講者の満足度について、従来の単なる平均値以上の具体的な洞察が得られると考えています。

戦略思考入門

本質を追求する戦略習得の旅

戦略はどう明確に? 戦略立案においては、最初に「誰に対して、どのような価値を提供するか」を明確にすることが重要です。戦略や手法は、その後に検討すべき手段であり、それ自体を目的とするべきではありません。しばしばこの順序が逆転しがちで、手法が先行してしまう傾向があります。 差別化の秘訣は? 差別化に関しては、見かけだけでなく顧客にとって本質的な価値を持つ差別化が必要です。持続的な競争優位を築くには、競合他社が簡単に模倣できない要素を見出すことが不可欠です。差別化戦略は単に「他社との違いを作る」ことではなく、「顧客価値の創造」と「持続可能な競争優位の構築」を目的としています。これには、VRIOフレームワークが実践的なチェックリストとして有効であることを学びました。 ジムの真価は? 実例としては、あるフィットネスジムのように、「他のジムよりも高価格」であることが表面的な差別化です。しかし、その本質的な価値は「確実な結果を得られる安心感」や「マンツーマン指導によるサポート」、「高額投資による強制力」などが挙げられます。そして、それらの価値を持続的に提供するために、組織としてどのような体制を整えるかが重要です。 VRIOの立ち位置は? まずはVRIOフレームワークで自社の立ち位置を明確にしたいと思っています。私たちが提供できる価値や他社と比べての希少性、模倣困難性、組織としての行動を整理し、それを新規営業での提案資料として活用することが目指すところです。 既存客価値はどう? まず既存クライアントへの価値提供を強化し、VRIOフレームワークの各項目を確立します。たとえば、在庫管理システム案件の着実な遂行や生成AIを活用した業務効率化の提案資料作成、データ分析レポートの質的向上に取り組んでいます。 外部資源はどう活かす? さらに、外部リソースの確保も進めています。具体的には協力会社やフリーランスの選定、業務の切り分けの検討、引継ぎドキュメントの準備を行っています。

データ・アナリティクス入門

本質を問い、解決へ進む一歩

問題解決はなぜ重要? 問題解決のステップである「What・Where・Why・How」は、根本的な課題解決力を高めるための重要なフレームワークであると改めて実感しました。問題解決を急ぎすぎると、いきなり「How」に飛びついてしまい、問題の本質を見失った対策に陥るリスクがあります。そのため、各ステップにおいて「なぜこの工程が必要なのか」を意識しながら、丁寧に取り組むことが必要だと感じています。 分析の目的は何? また、分析を行う際には、対象データやその性質、進行中のステップに応じ、複数の切り口やフレームワークを柔軟に活用することが大切です。視野を広げ、多角的な考察を実施する姿勢が求められるとともに、目的意識が明確でなければ、どれほど緻密な分析も意味をなさなくなります。分析の際は、「なぜデータ分析をするのか」「どの課題を解決すべきか」をはっきりと定めたうえで取り組むことが肝要です。 どう活かすべき? 今回の学びを活かせる具体例としては、施策の検証やシミュレーション、数字の未達や達成要因の分析、データの可視化やダッシュボードの作成と管理などが挙げられます。これらの業務においても、問題解決の各ステップを意識することで、仮説思考や多角的な視点を補完し、抜けや偏りのない網羅的なアプローチが実現できると考えています。 情報共有はどう? 特に、作成したダッシュボードを部署内で共有し、全員が直感的に課題やポイントを理解できるよう、視認性や意味を重視したデータの加工・構成を工夫することに取り組んでいます。今回学んだ内容は、実践と定期的な復習を通じて、他者に説明できるほど深く理解し、業務の中で確実に活用していきたいと思います。 学びを続けるには? この学習を一度限りのものとせず、継続的な行動として定着させるため、問題解決の各ステップを意識しながら、クリティカルシンキングやヒューマンスキルといった幅広いビジネススキルの向上にも努めていきます。

データ・アナリティクス入門

限界突破!数字が紡ぐ経営判断

仮説検証はどう進める? Gミュージックスクールの採用問題を通して、「仮説立案→データ検証→解決策選択」のプロセスを実際に考える機会となりました。特に、機会コストの概念を用いて「何を諦めるか」を定量的に評価する重要性に気付かされ、データ分析によって感覚的な判断を論理的な根拠に基づく戦略へと変換する価値を実感しました。また、限界に近づいていたある従業員の工数という制約条件下で最適解を導く過程は、現実のビジネス課題の複雑さを改めて認識させ、完璧ではない解決策を採用する経営判断の難しさも感じさせました。 受注と労働はどう連携? 一方、労働集約型の企業においては、顧客獲得と労働力確保が相互に関連していると実感しています。今回学んだデータ分析手法を活用し、営業データ(受注量、案件規模、事業部別実績)と人材データ(残業時間、採用状況、離職率)の相関分析に取り組む予定です。具体的には、受注増加期における人材不足と残業の関係を定量化し、適切な採用タイミングと人員配置の予測モデルを構築することを目指しています。また、機会コストの視点から優秀な人材の流出による売上機会の損失を算出し、採用および定着への投資の優先順位を検討する考えです。 数値で見る採用戦略は? まずは、日々収集している営業データと人材データを統合管理できるダッシュボードを構築し、問題の可視化を図ります。次に、相関分析と予測モデルの検討を通じ、「受注増加期の人材不足が残業の増加、ひいては離職率の上昇という負のスパイラル」にどのような影響があるかを定量的に捉え、適切な採用タイミングを予測するモデルを作り上げます。さらに、戦略的人材投資を実践するために、機会コスト分析によって優秀人材の定着に伴う投資効果を算出し、個別の引き留め戦略を検討します。特定の熟練者への依存構造も可視化し、業務の標準化やスキル継承プログラムの整備により、事業成長と人材確保のバランスをより戦略的に実現する経営体制への転換を目指します。

データ・アナリティクス入門

正しい比較で未来を切り拓く

本質をどう捉える? 今回の学びを通じて、データ分析の本質は「適切な比較」にあると再認識しました。これまでは無意識に比較を行っていましたが、今後は目的意識をより明確に持ち、比較対象や条件の設定に一層注力する必要があると感じています. 比較対象は何のため? まず、比較対象の選定についてです。これまでは目的が単純なため、対象の選定に深い検討を加えることが少なかったですが、今後は「何を知るために、何を基準にするのか」という明確な目的を持って、比較対象を吟味していきたいと考えています. 条件統一の意味は? 次に、分析の条件を統一することの重要性を学びました。分析したい要素以外の条件を揃えることで、因果関係にある要素を正確に特定できるようになり、精度の高い結論に導くことが可能となります. 施策例から何を学ぶ? 例えば、自部門の利益率向上を目指す施策立案の場面では、現状の課題を明確にし、改善策を具体的な数値に基づいて提案することが求められます。そのためにも、前年同期や目標値といった明確な基準を設定し、条件をしっかりと統一した上で、定量データを活用することが重要です. 実務での実践法は? 実務に活かすための具体的な行動としては、まず「基準」を明らかにした比較対象の選定があります。単に数値が低いと結論づけるのではなく、何と比較するかを明確にし、改善のポイントを浮き彫りにします。また、条件を整えた上で要因分析を実施し、真の要因を特定して精度の高い対策を講じることが求められます. 変化にどう向き合う? なお、実際の業務では状況の変化やさまざまな要因により、分析の目的や前提条件が途中で変化することもあると感じています。そのような状況下で、皆さんはどのように方向性を定め、納得感のある結論を導いているのか、また前提条件が揺らいだ場合の軌道修正のコツなどについて、意見交換ができればと思います.

クリティカルシンキング入門

自分発見!学びを紐解く旅

どう理解を深める? 状況を正しく理解するためには、層別分解、因数分解、プロセス分解など、様々なパターンを活用し、多角的な切り口で分解していくことが有効です。ただし、最初に「理解したつもり」になることなく、何度も分解を繰り返す姿勢が重要です。全体を具体的に定義しなければ、後々解像度が落ちる恐れがあるため、まずは全体像を正確にとらえることが求められます。目的を明確にした上で、その目的に即した切り口で分解していくことが、効率的な理解につながると言えるでしょう。また、たとえ分解しても理解が進まなくても、現状が「何もわからない」という事実に気づけること自体が大きな前進です。さらに、MECE(漏れなく、ダブりなく)という考え方は、情報を網羅的かつ重複なく把握するために非常に役立ちます。 データ分析は有効? また、社内の課題の原因を正しく捉えるために、業務関連のデータ分析を積極的に活用することも重要です。具体的には、社内システムからデータをダウンロードし、グラフに落とし込むことで傾向を把握し、その結果を用いてプロジェクトの方向性に対する合意形成を行うといった流れが考えられます。作成した資料についても、MECEの考え方を活用し、漏れや重複がないかを確認することで、より正確な情報共有が可能になります。 どこから挑戦すべき? 実践演習の中では、売り手や顧客側の情報に基づき分解を試みる際、直接的なアンケート調査を行うのが難しいという課題に直面することもありました。そのような場合は、手元にある情報のみをもとにまず推測を試み、どのようなアンケート調査が必要で、何の回答を得るためのものなのかといった目的を明確にする必要があります。情報が限られていると何から手を付けてよいのか分からなくなることもありますが、他の方々の状況やスキル、取り組み方などを参考にすることで、どのように工夫し、どこから始めるべきかのヒントが得られると感じました。

戦略思考入門

データで切り拓く挑戦の未来

客観データで説得? 今週の学習では、課題解決において感情論ではなく、客観的なデータに基づく論理的な分析と、それを「人に伝わるように」表現することの重要性を実感しました。タクシー業界のデータ分析を通じ、漠然とした問題を具体的な数値で把握し、多角的に解決策を検討するプロセスを学び、複雑な状況下でも本質を見抜き、説得力ある提案につなげる力が不可欠であると再認識しました。 外食業界で活かす? さらに、今回の学びは外食業態での仕事に直結すると感じています。従来は感覚に頼っていた新メニュー開発や既存メニューの見直しを、POSデータや顧客アンケートを活用して売上低迷の原因と潜在ニーズを客観的に特定するアプローチに変えます。たとえば、特定の時間帯に売れ行きが低迷しているメニューがあれば、その原因を徹底的に追求し、価格や食材、提供方法の見直しなど、多角的な対策を講じることで収益性向上を目指します。 集客戦略はどう? また、店舗の集客戦略にも学んだ手法を応用できます。近隣の人口構成や競合店の情報を分析することで、ターゲット顧客を明確にし、若年層にはSNSプロモーション、高齢者層にはデリバリーサービスといった、ニーズに即した戦略的な広告・宣伝活動を展開することが可能となります。 実践計画の工夫は? これらの学びを実践するため、以下の具体的な行動を計画しています。まず、毎日終業後にPOSデータをメニュー別、時間帯別、客層別に分析し、特に大きな差異が見られる点についてその原因を徹底的に追究する習慣をつけます。次に、週に一度、近隣の競合店のメニュー構成や価格、プロモーション情報をオンライン等で確認して、自店との比較分析を行います。さらに、月に一度、主要メンバーと共に売上データや競合情報を共有し、論理的な意見交換を通じてデータに基づく課題解決策を議論する「課題解決ランチミーティング」を実施します。

データ・アナリティクス入門

問題解決へのアプローチを学ぶ

原因をどのように探る? 原因を探究することについて学びました。問題の原因を明らかにするためには、その問題に至るまでのプロセスを分解して考えるアプローチがあります。複数の解決策を用意し、それらを判断基準の重要度に基づいて根拠をもって絞り込むことが重要です。 データ分析の精度を高める方法は? 具体的なステップを踏んでデータを分析し、問題解決の精度を高める方法や、仮説を試しながらデータを収集し、より良い解決策に繋げる方法を学びました。これら両方のアプローチを組み合わせることで、データ分析の精度を一層高めることができます。例えば、「自分の残業時間」について考えてみると良い練習になります。 A/Bテストはどのように進める? 【A/Bテストについて】 A/Bテストとは、二つの施策を試し、比較するテストです。目標の設定から始まり、改善ポイントの仮説設計、実行までのステップを踏みます。優位なデータ数が集まるまで行い、その期間内で検証を行うことが重要です。目的と仮説を明確にし、シンプルで低コストかつ少ないリスクで運用できるようにすることが求められます。 残業問題をどのように解決する? 試しに「自身の残業時間」の多さについて考えてみました。棚卸できる業務をその場しのぎで抱えていたり、時間割やスケジュールの把握が疎かになっていたりと、整理すべき項目はいくつか見つかりました。複数の解決策を導くためには、まだ整理しなければならない複合的な原因が残っていますが、「有耶無耶」な部分を明確にすることで解決策が見えてきました。 今後の課題解決のステップは? 今後は、メンバー個別の面談や少人数のミーティングを通じて、現在の課題を一緒に洗い出し、原因を突き止めてみることを実践したいと考えています。そして、仮説を立て、複数の解決案をもって組織としての意思決定や問題解決に繋げていきます。
AIコーチング導線バナー

「実践 × データ分析」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right