データ・アナリティクス入門

実践で分かる分析の極意

基本原則は理解できた? 今週は、ライブ授業を通して6週間の学習内容を実践演習で総まとめしました。初めに、1週目から学んだ基本原則に基づく比較分析や、データの種類に応じたグラフの加工・表現方法を改めて確認しました。また、データ分析を始める前に、目的や仮説の重要性についても再認識する機会となりました。 プロセスは理解できた? さらに、問題解決のプロセス(What・Where・Why・How)や分析のステップ(仮説構築・データ収集・データ分析・仮説検証)を実践する中で、やみくもな分析を避けることや、アウトプットのイメージを持ってデータ収集を行う大切さを痛感しました。 キャンペーン分析は進んでる? 私の業務では、電子マネー決済によるキャンペーンの分析を行っており、決済データをもとに利用者の定性情報や行動パターンを把握することで、決済回数や決済金額の増加に向けた施策の提案や効果検証を進めたいと考えています。 目的は明確になった? 現状の課題は、データ分析の目的や分析する内容が関係者の間で曖昧になっている点です。そこで、まずは分析の目的や問いを明確にし、何を分析するのかを関係者間でしっかりと共有・可視化する必要があります。目的や分析対象が定まれば、データ収集を実施し、その結果をもとに仮説構築を進めます。仮説構築の際も、重点的に検討すべき点を明確化し、関係者と共有していくことが重要です。 施策は具体的になった? また、現状分析では、各種フレームワークを活用しながら、問題点やその原因、そして打ち出す施策を具体的に明確にすることが求められます。最後に、データ収集および仮説検証の結果は、関係者にわかりやすく説得力のある形で伝えられるよう、適切なグラフを選んで可視化し、報告していく予定です。

データ・アナリティクス入門

仮説と比較で読み解く数字の真実

仮説はなぜ重要? データ分析は、ただ数字を羅列するだけではなく、自分なりの仮説を立て、その仮説を検証するための手段であると再認識しました。数字を見てもただの数字遊びになってしまうため、最初に明確な仮説を設定し、その仮説に基づいて分析を進めることが大切だと感じています。 過去比較はどう読み解く? また、分析においては過去のデータとの比較が非常に重要です。たとえば、あるプロダクトの売れ行きが明確な季節変動を示している場合、過去の同時期や前年のデータと比較することで、その背景にある傾向に気づくことが可能になります。このような比較を通じて、何が影響しているのかを客観的に把握する意義を実感しました。 利用状況はどう見極め? 自社プロダクトの販売実績や機能の利用状況の可視化にも、こうしたデータ分析の手法を取り入れています。毎月、売れ行きや利用状況を分析し自分なりの考察をまとめていますが、最近は単調になりがちで、より深い洞察が求められていると感じています。たとえば、「なぜ売れているのか、なぜ売れていないのか」、「なぜ機能が使われているのか、使われていないのか」といった真因を把握するために、属性や業界別の利用状況・売上トレンドを過去データと比較して分析できるスキルを身に着けていきたいと思います。 仮説検証で何が変わる? さらに、データ分析を行う際は、まず自分なりの仮説を必ず設定することが基本です。たとえば、ある規模以上のお客様では機能利用率が高いが、規模が小さいお客様では逆の傾向があるといった仮説を最初に立てることで、その後の検証や分析がスムーズに進み、より多くの気づきを得ることができると考えています。これまで学んだ分析スキルを活用し、今後も実践的に取り組んでいきたいと思います。

クリティカルシンキング入門

分解と工夫で見える新たな発見

なぜ分解して把握する? 物事を分解して状況の解像度を上げることの重要性を学びました。特にデータ分析の視点から、①加工の仕方、②分け方の工夫、③分解時の留意点という3つのポイントに着目して学習を進めました。 加工手法ってどう? まず、データ加工については、意味合いを分かりやすくするために基準を設け、グラフ化する手法に注目しました。与えられた票をそのまま見るのではなく、自ら欄を追加して全体を俯瞰することで、絶対値や比率などの数値から隠れた傾向を明確にする―いわゆる「可視化」が鍵となります。 どう分けると良い? 次に、データの分け方の工夫では、手元のデータをもとに状況を捉えるため、単に機械的な10刻みで区切るのではなく、試行錯誤を繰り返しながら意味のある切り口を見つけ出すことの大切さを実感しました。場合によっては、元のデータに立ち返って再検証する方法も有効です。 分解の注意点は? また、実際に分解する際は、When(いつ)、Who(誰が)、How(どのように)の観点を持って整理し、自分自身に本当にそうかと問いながら、複数の切り口から検証していく姿勢が求められると理解しました。こうした実践を通じ、たとえ一度で完璧な結果が得られなくとも、傾向が見えてくること自体に大きな価値があると感じます。 分析結果をどう活かす? これらを踏まえ、まずは自分の部門での最近の取り組みを題材に、発生件数や予測される件数、台数などを定量的に観測し、事象の強弱からリスクの高低を分類する(いわばクラスタリングする)というアイデアが浮かびました。加工方法や分類の工夫は、実践経験を重ねる中で深まるものだと考えていますし、他にも有効なアプローチがあれば議論を通じて共有できればと思います.

データ・アナリティクス入門

理想と現実のギャップを埋める術

現状と理想は何だろう? 手元にあるデータを見つめると、まず「どうしようかな、何をすればいいかな」と迷いが生じました。しかし、まずは現状と理想を明確にし、そのギャップをどのように埋めるかを段階的に考えることが大切だと学びました。 ロジックの魅力はどう? そして、そのプロセスでロジックツリーという手法が登場します。従来、分析とはただ蓄積された情報から何かを取り出す作業だというイメージがありましたが、目標を設定し、漏れなく重複なく案を出し、その中から最適なものを選び出す手順があることに気づき、分析が思っていたよりもクリエイティブな作業であると実感しました。 経営企画室との連携は? また、これまで経営企画室の仕事について疑問を抱いていましたが、おそらく同様のプロセスで業務が進められているのだろうと感じました。今後、経営企画室と連携し株主総会などの準備に関わることになるため、直接データ分析や資料作りに携わらなくとも、同僚が分析した内容を参考にして学ぶことができると考えています。 実践で見えた効果は? さらに、日々の業務においても様々な問題や課題が発生しているため、今回学んだ手法を早速実践してみたいと思います。特に、安全衛生の分野では業務の範囲が定まっておらず、どこから手をつけるべきか迷っていたため、まず全体をMECEで洗い出し、その上でロジックツリーを用いて優先順位を整理する方法は、上司に説明する際にも非常に分かりやすいと感じました。 MECEの見直しはどう? しかし、自分では完璧なMECEになっていると思っていても、実際には抜けや漏れがあるかもしれません。MECEのチェックポイントについて、何か良い方法があるのか疑問に思います。

クリティカルシンキング入門

データ分析で未来を切り拓く学び

なぜ情報を分解するのか? 状況を解像度よく理解するためには、情報を分解することが重要です。特に、数字はグラフ化が可能なため、非常に有効な手段となります。分解を行う際にはいくつかの注意点があります。まず、加工の仕方としては、表に追加する欄を考えたり、相対値を計算したりするなどです。また、グラフを作成することで視覚を働かせることも効果的です。 多角的に見るための視点とは? 次に、情報の分け方についてですが、単に機械的に分けるのではなく、仮説を立てて特に影響力の大きい要素を優先して分解します。また、同じ状況に対して複数の観点から分解することも重要です。ある一つの視点だけでは状況を完全に把握できないことがあるため、他の視点も試すことが肝要です。 問題箇所を特定する方法は? さらに、MECE(Mutually Exclusive, Collectively Exhaustive)を意識して分解することで、問題箇所の特定を助けます。目的を明確にし、わかりやすい形で層別、変数、プロセスに分解すると良いでしょう。また、ロジックツリーを使って、仮説を立てた上でインパクトの大きい要因から切り口を考えます。この過程でアイデアを広げる際にもロジックツリーは有用です。 入学者分析で何が得られる? 具体的な応用として、入学生徒の性別、学力、地域、求めるものなどの傾向を分析することが挙げられます。これにより、入試広報活動を改善し、学校が求める生徒像に合致する生徒を獲得することができます。また、普段から数字をグラフ化する習慣をつけ、ロジックツリーなどを利用して考えを図式化することも有効で、完璧さを追い求めるよりも、実践と反復練習を重視することが大切です。

データ・アナリティクス入門

目的で変わる!本気のデータ分析

分析の目的は? 今回の課題を通じて、データ分析の出発点はデータそのものではなく、「この結果を用いて何を判断するのか」という目的の明確化にあると実感しました。これまで、私自身は目的を曖昧にしたまま手元のデータ項目を比較することで、単に数値の違いを示すだけに終始していたため、数値の変動理由が不明瞭なままで、次にどのような行動を取るべきかが判断できませんでした。 比較軸整理はどう? 今回の学びから、目的に立ち返り、目標達成に必要な情報が整理された項目を選定し、条件が同じ項目同士を比較することが、真に意思決定に結びつく分析を行うために不可欠であることに気付きました。今後は、分析の前に判断すべき内容を明文化し、それに基づいて比較軸とデータ項目を整理することで、より実践的かつ具体的な行動に結びつく分析を目指していきます。 施策の実行は? また、今回学んだ「目的に基づくデータ分析」の考え方は、私が関わるチームの売上拡大や販売体制の最適化にも大いに活かせると感じています。たとえば、催事別、店舗別の売上や人員配置などのデータをただ眺めるのではなく、「どの施策が成果に結びついているのか」「どの事例を基準にすれば再現性のある成果を期待できるのか」という明確な目的をもとに分析することで、成功要因をより具体的に特定することが可能になります。 具体的な行動としては、まず分析前に判断すべき内容を明確に記述し、比較軸や指標を整理します。その後、時系列や複数の切り口からデータを集計・可視化し、売上や生産性への影響を検証する手法を取り入れます。このプロセスにより、チーム全体で施策の再優先順位を見直し、より効果的な行動計画を策定していく所存です。

データ・アナリティクス入門

データ分析で見分ける成功の鍵

データ分析で比較はなぜ重要? データ分析の基本は「比較」であることを学びました。しかし、ただ単に比較すれば良いというわけではありません。分析の目的に応じて比較の軸が異なるため、その目的を明確にすることが重要です。さらに、データ分析の結果を報告する際には、見せ方を工夫することも大切です。比率を見たいのか、推移を見たいのかなど、定量データに応じた適切な見せ方を検討する必要があります。 飛行機の生存能力をどう改善? 動画の中で、飛行機の生存能力を上げるための改善点を考えるという課題がありました。初めは「欠損している部分」を改善するべきだと思いましたが、分析の目的を考えると、「欠損していない部分」を補強する方が生存能力が上がるという解説を見て納得しました。 業務でのデータ分析の課題とは? 日々の業務でも、お客様がデータ分析をしたいと言いつつ、現状の把握だけで終わってしまうケースが多々あります。そこで、データ分析の基本として、目的の明確化と比較の重要性を伝えていきたいと思います。たとえば、実績だけの数値を並べているケースでは、その数値が良いのか悪いのか判断できず、その後のアクションが不明瞭になっているお客様が多くいます。このような場合には、具体的な提案を行いたいです。 学びを実践するプロセスが大事? 学んだことを実践し、アウトプットすることで、その結果が良かったのか、改善の余地があるのかを言語化することも大切です。振り返りを必ず行い、学んだことを整理し自分の中に落とし込むプロセスを欠かさないようにします。グループワークや講義の中では、自分ごととして捉えることを意識し、積極的に考え、発言するように心がけています。

データ・アナリティクス入門

データ分析で見えてくる新しい視点

データ分析の基本概念とは? 今回の講座を通じて、データ分析のアプローチ方法や考え方を学ぶことができました。特に以下の点について多くの学びがありました。 まず、「分析とは比較である」という基本的な概念を理解しました。また、データ分析においては仮説思考が重要で、最初に仮説を立ててからデータを使ってその確からしさを確認するプロセスが大切であることを学びました。特に印象的だったのは、スポーツチームの例を通じて、単に打率ではなく得点貢献度に注目することでチームが勝つための分析方法を実践している点でした。 問題解決の枠組みは? さらに、問題解決のアプローチ方法として、「what、where、why、how」という枠組みを学びました。また、分析の視点としてインパクト、ギャップ、トレンド、ばらつき、パターンの五つの視点を持つことの重要性を認識しました。それぞれの視点に合わせたグラフの見せ方も習得しました。 今後の実践計画は? これらの学びを実務に反映させるべく、現在進めているマーケットプランの中で実践していきたいと思います。具体的には、仮説思考を取り入れてロジカルにフレームワークを組み立て、その仮説をデータで証明するために正しいグラフを選び、説得力のある資料を作成します。そのために、フレームワーク、ロジカルシンキング、グラフの見せ方を再度復習しました。 9月14日から9月16日にかけての期間に、これらの復習を行いました。そして、9月中には今回習ったことを営業組織にフィードバックし、アウトプットに向けての準備を進めます。これらの知識とスキルを、日常のマーケットプラン、アカウントプラン、計数管理、CS調査に役立てていきます。

クリティカルシンキング入門

データ分析で「全体像」を掴む技術

全体像はどう描く? データ分析において、状況を明確にするために分解が重要だと改めて感じました。まずは全体像を定義し、その上でデータを鵜呑みにせず可視化することが大切です。これまでの分析ではグラフを十分に活用してこなかったため、今後は積極的に取り入れたいと思います。比率計算を行うことは基本として、これまでの実践が正しかったと確認できた点は良かったです。 どの視点が大切? 分析する際、単に機械的に分けるのではなく、BtoBビジネスでの分析環境を踏まえて、年齢層や学生かどうかといった視点を考慮することが重要です。特徴的な傾向が見えない場合でも、それ自体に価値があることを意識し、様々な切り口から分析を試みることが大切です。こうしたアプローチを通じて、データ分析の精度を上げていきたいと思っています。 仮説の真実は? 私は頻繁にデータ分析を行う立場にいますので、全体を改めて定義し、グラフを駆使しながら多角的にデータを分解してみることに挑戦したいと考えています。また、特定の仮説が正しいか検証するためにも、多様な切り口での分析を継続して行いたいです。現在の業務改善プロジェクトで実践している「プロセス分解」にも、さらに効率的に活用できる方法を追求していきます。 過去と今を比べる? そこで、過去のプロジェクトレビューを計画しています。以前取り組んだ案件のデータを利用し、当時と最近の学びを基にした分析を比較し、効率や分解の質を評価したいと考えています。結論が変わることはないと思いますが、分析時間や分解の質など他に計測できる点を比較し、効率化の可能性を探りたいと思います。適用可能なプロセス分解手法は、今後も活用していくつもりです。

データ・アナリティクス入門

分析の「比較」効果で迷い解消!

分析の基本: 比較の重要性とは? 分析は比較であるというシンプルな理解に到達しました。以前は、数字から何を見出すべきか分からず複雑に考えていましたが、シンプルな視点からスタートすることの重要性を学びました。ただし、正しい比較対象がなければ、正確な分析はできません。このことに関連して、"要素をそろえる"という部分については、さらに実践的な学習や本コースでの深掘りを行いたいです。 効率的な分析設計のために必須なことは? また、グラフなどの見せ方を決定する以前に、分析する目的を設定すること、特に依頼された場合はその確認が大事だという点も理解しました。これにより、システムテストの品質評価やベンダー選定時など、具体的な場面で分析の質を向上させることができると考えています。 データ分析における注意点とは? これまでの経験では、依頼時に目的が曖昧な状態で受け取ることが多く、データの分析において何をすべきか判断がつかなくなり、結論を出せないこともありました。今後は、以下の3点を重視して取り組む予定です。まず、やみくもにデータを加工せず、目的の確認と仮説立てを確実に行うこと。次に、分析は比較を念頭に置くこと。そして、比較対象を分析の目的に沿って選定することです。 依頼者とのコミュニケーションで何が重要? 依頼者からは、目的の確認や必要な分析の方向性をしっかり聞き取ることが重要です。分析を始める前に目的を明確にするステップを必ず取り入れるべきだと感じました。その際、仮説をある程度考えると良いと思いました。また、仮説を立てる際には、比較対象が適切かどうかを依頼者と事前に合意することで、さらにスムーズに進められると感じています。

クリティカルシンキング入門

伝え続ける気づきの瞬間

グループで何を考える? グループワークを通して、「イシューの共有」や「伝え続けること」の重要性を改めて感じました。業務に没頭して目の前の作業に追われると、本来の課題を見落としてしまうことがあるため、自分自身はもちろん、メンバーにとっても大切なポイントだと捉えています。 復習から学ぶことは? ■ 復習 数週間前のことを思い出せず、自分の記憶力の弱さに直面した経験を反省しました。これは業務全体にもあてはまり、案件が増えるほど忘れることが多く、結局は思い出すところから始めなければならず効率が悪いと感じました。例えば、会議では時間の空白を極力避けるとともに、前回の内容を参加者がスムーズに思い出せるよう、事前に重要なポイントをピックアップしておくことで、良いスタートが切れるのではないかと思います。 イシューはどう伝える? ■ イシューの共有 議論が分散しがちな際には、ホワイトボードなどを活用して、主要なイシューを皆が見える場所に書き出すとよいと感じました。こうすることで、常に意識が向けられ、議論の軸がぶれにくくなると考えます。 データ活用はどう? ■ データ分析 数字に対する苦手意識は以前よりも軽減していますが、普段の業務で扱わなければ、再び苦手意識が強まる可能性があります。これからもデータに触れる機会を積極的に作り、スキルを維持・向上させたいと思います。 思考力を鍛えるには? ■ コンセプチュアルスキルの向上 クリティカルシンキングだけではなく、ロジカルシンキングをはじめとする思考力全般の鍛錬が必要だと実感しました。今後は、本を読むなどして知識を増やし、それを実践で活かしていく所存です。

戦略思考入門

現実を知り、未来を描く学び

規模の経済ってどう考える? 「規模の経済性」という言葉は知っているものの、自社の状況に合わせて具体的に説明するのは難しく、正しい理解が必要だと感じました。生産量を増やすことで必ずしもコストが下がるわけではなく、需要、設備能力、在庫管理、資金繰りなど、さまざまな制約条件を考慮しなければならないと分かりました。また、原材料を大量に発注してコスト削減を狙っても、市場環境や仕入先の状況によっては効果が限定される場合があり、単に数量を増やすだけでは交渉力に繋がらないことも理解しました。 戦略原理は実践できてる? さらに、戦略の原理やフレームワークは知識として持つだけでは不十分で、数字やデータ、自社の実情に照らして活用することが重要だと感じました。自社の商品やサービスの理解を深め、業務フローや収益構造を把握することで、提案や意思決定の説得力が向上することにも気付かされました。 生成AIの変化はどう捉える? また、生成AIの登場により、従来の開発者が習熟していく過程が変わりつつある現状もあり、この変化は「習熟効果」が技術革新によって無効化される例ともいえ、イノベーションが既存の競争原理を覆す瞬間だと感じました。 多領域スキルはどう磨く? このような状況に対する打開策として、単一の専門スキルに依存するのではなく、複数の領域にまたがる知識や経験を横断的に活用できる体制を築くことが有効だと考えます。具体的には、開発者としてのコーディング能力だけでなく、要件定義、UX設計、ビジネスモデルの構築、データ分析など、隣接する領域のスキルを組み合わせることで、AIツールを前提にした新たな付加価値の創出が期待できると感じました。
AIコーチング導線バナー

「実践 × データ分析」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right