クリティカルシンキング入門

気づきが変えた!思考の深掘り術

なぜ深掘りが重要なのか? 物事に対して「なぜ」と深く掘り下げる姿勢が大切だと気づきました。データや他人の意見を表面的に捉えることが多かったことに改めて気づかされました。クリティカル・シンキングがなぜ必要なのか。物事の意味を深く考えることが、その本質を捉えることに結び付くのだと実感しました。 ロジックツリーで得られる新しい発想とは? また、ロジックツリーの考え方を学び、自分の思いつきに頼った方法から離れることができました。課題に対して原因をカテゴリーに分けて掘り下げることで、新しい発想を得られることがあります。今後もこの考え方を活用していきたいと思います。 なぜデータの深掘りが必要なのか? 具体的には、新商品の企画立案や商品の売上分析の際に役立つと考えています。市場調査や顧客の声を参考にしている中で、データをそのまま受け取ってしまうことがあるため、なぜそのような意見やデータになるのか深掘りする思考を持ち、情報を整理することに努めたいです。また、売上分析では、顧客の感じ方をより深く理解するために「なぜ」を問い続けることで、具体的な施策提案につなげられると考えています。 思考整理の習慣化はどう進める? 一度学んだからといってすぐに身につくわけではありませんが、まずは日々の考え方の習慣づけから始めて、自分の能力として高めていきたいです。例えば、上司に確認する予定の内容について「なぜそう思ったのか」を考え直し、思考整理を進めます。また、現在の課題や案件にロジックツリーを使い、漏れや重複がないかを確認しながら原因と考察をしていく予定です。

デザイン思考入門

共感が創る企業支援の未来

共感の大切さは? 企業支援を主な業務とする中で、最も効果的なのは、デザイン・設計の段階で「共感→課題定義→発想→試作→テスト」という流れを取り入れることだと感じています。特に「共感」のステップに重点を置くことで、ユーザーの深層ニーズをより正確に引き出すことが可能になります。このため、課題定義に入る前に必ず共感の把握を行うプロセスを取り入れるべきです。 具体策はどう? また、共感の手法や具体例については以下の点を改めて検討しています。具体的には、共感のプロセスでどのような方法を用いて深層ニーズを引き出しているのか、そしてそのニーズを把握した後、どのような形で課題定義に活かすのかという問いに対して、実践に即したアプローチを模索する必要があります。 実践の工夫は? 実践面では、十分にそのままの形で実施できていないと感じることもありますが、振り返りの中で、ユーザーの情緒的な側面に配慮しながら課題定義を行うことで、内部での納得度が高まり、最終的な成果にも良い影響を与えると実感しています。これまでも一部では提案を行ってきましたが、さらなる観察やヒアリングを通じて、より具体的な対策を講じるべきだと考えています。 未来へどう進む? 今後は、企業支援の流れにおける「共感」から始まる一連のプロセスを、より具体的かつ実践的に展開していきたいと考えています。さらに、マーケティングのみならず、経営や企業変革全体を視野に入れた支援を実施するため、従来の課題解決から課題定義へのシフトを図り、自身の支援サービスのあり方についても再検討する予定です。

データ・アナリティクス入門

課題を分解!納得解決への道

課題の裏側は何? 課題に取り組む際は、各要素を因数分解し、ステップごとに整理することで納得感が高まると実感しています。今回の課題も、最初はアンケートによる満足度の低下に着目しましたが、さらに深堀りすることで、事業の柱である上級クラスの今後の採用方針まで課題が波及していることが見えてきました。目の前の問題を一気に解決しようとするのではなく、その課題から導かれる仮説をひとつずつ丁寧に検証し、対処していく姿勢を大切にしています。 分析の進め方はどう? また、業績に直結する数字の悪化など、すぐに解決できる施策を探すことに注力しがちですが、分析のステップをじっくり進めると、チームビルディングや個々の業務の進め方など、すぐには表面化しない根深い問題にも気づくことが多いと感じています。こうした課題に対して、全員が納得しながら解決に向けて取り組むためには、段階を追って問題解決を進めることが重要であり、わかりやすいアプローチが求められると感じました。 仮説の説明はどうなってる? 自分の考えた課題と、分析によって得られた仮説や解決策を順を追って説明することで、関係者にも理解しやすくなると考えています。また、一度に説明しても伝わりにくいため、各会議の場でテーマごとに議題として取り上げ、直接関係するメンバーに課題を提示するようにしています。例えば、ある会議では売上改善のための施策や単価、人数といった具体的な対策、さらにターゲットとすべき客層や現行の営業アプローチの方法など、段階的に議論を進めることで、最も効果的なアプローチを模索しています。

戦略思考入門

普段の判断に戦略のヒント

戦略背後の分析は? ワンイシューに流されるのではなく、戦略の背後にある分析内容をしっかり確認することが大切だと感じています。戦略を自ら立てる際、たとえ分析を行ったとしても、普段は経験則に基づいた判断を重視していたことを改めて実感しました。 経営と現場の視点は? 経営者の視点で考えることは、自身の事業だけではなく、会社全体の利害を見据えるという意味で非常に重要です。しかし、実際にはその実現が難しいシーンも少なくありません。戦略を策定する際には、どの方向に向かうのか、視野が狭くなっていないかをまず意識する必要があります。明確に事業計画を立てる場面では効果的ですが、日常の小さな判断においても戦略的思考を自然に取り入れる努力が求められます。 分析に偏りは? また、戦略の分析にフレームワークを用いると、つい「答えが存在する」という前提で都合の良い分析に偏りがちです。本当に公平な視点で分析を行うには、どのような方法が有効なのか、改めて考える必要があると感じます。 不利な判断の覚悟は? さらに、経営者の視点での分析は重要だと理解しているものの、時には自分の部署にとって不利な判断、例えば縮小や評価の低下を伝えなければならないこともあります。部署の成果を重視すれば、モチベーションは上がるかもしれませんが、規模縮小などの判断はメンバーの業績評価に影響を及ぼし、ネガティブな結果を招くことも考えられます。経営判断であれば周囲も納得するかもしれませんが、現場でそのような判断を行うには、相当な覚悟とパワーが要求されると感じています。

データ・アナリティクス入門

問題解決力を育むプロセスの魅力

原因の見極めは? 問題を解決する方法の一つとして、プロセスを分解して原因を明らかにするアプローチがあります。また、解決策を検討する際には、複数の選択肢を洗い出し、根拠に基づいて選定することが大切です。この際には、判断基準の重要度に基づき重み付けを行い、解決策を評価して選択します。 データで何が分かる? データを分析しながら問題解決の精度を高めるためには、ステップを踏んで行う方法や仮説を試してデータを収集し、改善につなげる方法があります。これらのアプローチを組み合わせることで、データ分析をより高度に行うことが可能です。 業務の見直しは? 現在、マーケティング関連の業務をしていなくても、特定の目標を達成するために、行動や業務フローを時系列や工程ごとに分解し、問題点やボトルネックを洗い出すことができます。これらの問題が実際にボトルネックとなっているかは、日々の業務を通じて確認、検証、改善を重ねることが必要です。このプロセスを通じて、実際に成果に結びつく行動を特定することが重要です。データ分析が可能となるよう、数値化された目標や行動(KPI)が設定されていることが重要な前提です。 残業改善のヒントは? 例えば、チームが抱える課題として残業時間の多さがあるとします。この場合、目標を「各スタッフの残業時間を月10時間以内に抑える」と設定し、各スタッフの業務工程を洗い出し、それぞれの業務にどれくらいの時間がかかっているかを分析します。そこから、効率化またはアウトソーシング可能な箇所を特定し、実際に実践することが望ましいです。

クリティカルシンキング入門

伝える力を磨く!実例で学ぶ報告術

伝える心構えはどう? 伝えることの心構えとして、常に相手の立場になって考えることが重要です。何を伝えたいのか、どのように伝わるのかを意識し、相手にとって理解しやすいように努めましょう。 伝え方ってどうする? 伝える方法については、フォントの大きさや色、斜線などの加工によって伝わり方が変わります。それぞれの加工にどのような意味があるのかを考慮し、適切に使用することが大切です。また、グラフは多ければ良いわけではなく、まとめられるものはまとめ、スライド内に置く順番にも注意を払いましょう。一般的には「左から右、上から下」に視線が移動するため、この順序を意識することが大切です。 報告の伝え方は? 私の業務は「伝達すること」が非常に多く、学んだことはさまざまな場面で役立つと考えています。たとえば、上長への報告や部内の売上報告会議、原料調達コストの他部署への報告、新プロジェクトの企画内容やスケジュールの紹介などです。特に部内の売上報告時には、実績や前年比、予算比などに対して、色付けや丸を付ける、下線を引くなど、何を伝えるかによって表現方法に気をつけなければなりません. 学びをどう活かす? 今回の学びを、特に「売上報告」を中心に活かしていきたいと思います。前週に学んだピラミッドストラクチャーを使用して、何を伝えるべきか、その理由をグループ化し、スライドに反映するときには、一つ一つのメッセージの表現を意識します。また、適切なグラフを活用することで、ただ数値を羅列したり文章だけでなく、相手に理解しやすい手段を模索していきます。

データ・アナリティクス入門

小さな気づきが未来を拓く

原因はどこにある? データ分析の各ステップを学んでいく中で、問題の原因を具体的に特定する段階に達しました。その過程では、確かに難しさも感じました。普段、何気なく行っている問題の究明はあいまいな部分があり、必ずしも分析に基づいて進められているわけではありません。たとえば、ある文書に対する口コミに関心を持っても、その口コミの年代や時期、男女比、キャンペーン実施の有無など、詳細な点には踏み込まない場合が多いと感じます。 どう試せばいい? また、動画でも示されていたように、このステップや手法に慣れるためには、身近な事例で実際に試してみることが不可欠です。うまくいかないときには、どの点をどのように改善すればよいかを考え、再度取り組むというプロセスを繰り返す必要があると実感しました。 適用例はどう考える? この手法は幅広い場面で活用できると思いますが、具体的な適用例をすぐにイメージするのは難しい面もあります。日常的には数字を扱っていますが、それらの数字から直接施策や解決策を導き出す機会が少ないため、意識があまり向かないのかもしれません。また、非常に困難な状況や緊急性の高い場面が少ないことも影響していると考えます。 改善の実現方法は? 現職は大きな問題がないため安定しているものの、逆に「こうなればもっと良くなるかもしれない」という改善点に積極的に取り組めていない部分も多くあります。問題と捉えるというよりは、今後の課題として「どのようにすればさらに良い状態になるか」を洗い出し、身近に改善すべき対象を見つけていきたいと考えています。

データ・アナリティクス入門

仮説で切り拓く成長への道

フレームワーク何故有効? 課題に取り組む中で、仮説作成のためのフレームワークが非常に有用だと実感しました。普段は、「〜なんじゃないかな」「このデータだとこんな感じかな?」と何気なく仮説を立てることもありますが、フレームワークを用いることで、考えるべき側面を網羅的に整理でき、より多くの仮説を効率よく導き出せると感じました。もちろん、一般的な枠組み(例:3Cや4P)以外の見方が必要な場合もあり、その都度、自分で検討することが大切だと再認識しました。 過去の仮説はどうだった? 過去の業務では、なんとなく仮説を立てたり、仮説を持たずに作業を進めたりすることがあったと感じています。そのため、今後は以下の点を意識して取り組んでいきたいと思います。 ・常にフレームワークを利用して仮説を作り出すように心がける。 ・過去に読んだマーケティングの書籍などを再読し、その知見を実際に活用する。 ・仕事だけでなく、日常生活においても仮説を立て、検証するプロセスを積極的に取り入れる。 検証プロセスは有効? また、データを単に集めたりビジュアル化するだけでなく、意図的に仮説を立て検証するプロセスを業務に取り入れることで、より論理的なアプローチができると考えています。今後、講義で学んだ具体的な方法をもとに、自主学習を進めながら、疑問点や気になる点を解消していきたいと思います。 新生活どう迎える? なお、来週は新しい仕事に就くための引っ越し作業が重なり、少し慌ただしくなりそうですが、引き続き学習に力を入れていく所存です。

クリティカルシンキング入門

論理的思考を深める3つの視点

論理的思考を深めるには? あなたの振り返りでは、論理的思考の重要性やクリティカル・シンキングの具体的な方法に対する深い理解が見られます。「3つの視」といった概念を自身の反省に結びつけている点は特に良いと感じました。しかし、具体的な例やケーススタディを用いることで、さらに視点を深めることができるでしょう。 具体例を試してみよう 具体的な思考を深めるためには、「3つの視」の概念を具体的な場面で試してみることが有効です。具体例を挙げながら視点や視野をどう変えられるか考えてみてください。また、ロジックツリーを活用する際には、具体から抽象へのキャッチボールをどう効果的に行えるかも意識してみましょう。 さらに、実際の事例やケースを用いながら論理的思考の訓練を継続的に行うことが重要です。継続的な実践を心掛けていきましょう。 毎日の場面でどう活かす? これらのスキルは、長距離型の企画書作成やプレゼンテーション、来期の目標設定、チームの目標設定、転職活動といった場面だけでなく、短距離型の商談や会議での発言、メールの文章作成、日々のコミュニケーションにおいても活用できます。どの業界や会社においても通用するスキルであると考えています。 自分に問いかける習慣を また、「それって本当?他にはあるのか?」と考える習慣を身につけることも重要です。具体的には、この二週間は思ったことをすぐに口にしないように心掛け、その後、フレームワークについて学ぶと良いでしょう。フレームワークに関する本を読むことに加え、実際に実践してみることが大切です。

アカウンティング入門

利益の裏側、覗いてみませんか

損益計算書を理解できた? 今週は、損益計算書の構造を体系的に整理することができました。売上高からさまざまな費用を引いていく過程を順を追って理解することで、最終的にどのように利益が生み出されるのかが明確になりました。 粗利の計算方法は? まず、売上高から売上原価(仕入れ、材料費、人件費など)を引くことで、売上総利益(粗利)が導かれます。次に、販売費および一般管理費(広告費、販売手数料、オフィス賃料、管理部門の人件費など)を差し引くと、営業利益が算出されます。 利益計算の流れは? さらに、営業利益に営業外収益を加え、営業外費用を引くことで経常利益が求められます。ここでは、受取利息や支払利息、為替差損益など、本業以外の収支が反映されています。最後に、経常利益から特別損失や法人税等を差し引くことで、当期純利益が確定します。一時的な損益が反映されるため、この段階で企業の最終的な利益が示されます。 どこで利益が生まれる? この一連の流れを通して、企業がどの段階で利益を生み出し、どこにコストが発生しているのかを具体的に把握することができました。また、さまざまな業種に投資する際、各企業の損益計算書を比較することで、例えば製造業とSaaS企業ではコスト構造や利益率に大きな違いがあることを理解でき、投資判断や経営支援の質向上につながると感じています。 投資先をどう分析? 今後は、定期的に投資先の財務諸表を比較・分析し、どの部分で企業価値が生み出されているのかを見極める習慣をつけていきたいと思います。

アカウンティング入門

提供価値に気付く会計分析

会計データの意味は何? 会計データが単なる数字や割合ではなく、企業が顧客に提供する価値と密接に結びついた「意味ある情報」として捉えられる点が印象に残りました。企業の提供価値やビジネスモデルに即してP/L・B/Sを分析することで、従来は抽象的だった数字に具体的な背景が読み取れるようになったと感じています。また、異なる業界の事例を比較検討することで、業界特性やビジネスモデルがより明確に理解できるという新たな視点も得られました。 比較で何を発見する? 受講直後は、競合企業との比較に重点を置いていましたが、異業種との対比により新たな発見があることに気付かされました。もともと自社は通信制の教育事業を中心に展開しているため、同業他社との比較が主でしたが、コンテンツ配信の観点から他業界の会計データを参照することで、売上原価の削減など別の改善策を検討する余地が見えてきました。今後は「提供価値を意識した会計データの読み解き」と「比較・対比を通じた気付き」を大切にしていきたいと考えています。 異業種の決算書は何を示す? また、新規事業立案にあたっては、競合のみならず異業種の決算書も調査し、従来の儲け方以外の可能性や資金の使い方、調達方法について幅広い視点で検討していきます。具体的には、5月末までに決算書が提出される企業の事例を調べ、6月中に自社との比較分析を行う予定です。決算書全体を細部まで追いかけるのではなく、主要な利益項目など大きな数字に注目し、グラフなどを活用して全体の傾向を把握した上で詳細な分析に進むことを意識していきます。

データ・アナリティクス入門

データ分析で学ぶ効果的な解決策の作り方

比較方法って何だろ? 「比較」の方法には、代表値を使って比べる方法や、グラフなどで視覚的に情報を整理して見比べる方法があります。 目的は明確か? 定量分析の中で最も重要なのは、まず目的や問いを明確にすることです。目的達成に関連する要素を考えて仮説を立て、その仮説を検証するために必要なデータを集めます。そのデータを基に、インパクトやギャップ、トレンド、ばらつき、パターンといった視点から分析を行います。 手法はどう? 分析のアプローチにはさまざまな手法があります。例えば、ギャップを示すには横棒グラフを、トレンドを示すには折れ線グラフを、分布を示すにはヒストグラムや円グラフを、パターンを示すには散布図を用います。また、数字としては単純平均や加重平均、幾何平均、中央値を用います。データの散らばりを見る際には、分散や標準偏差を参照します。回帰分析やモデル化を用いることで、データの関係性を数式化することも可能です。 因果はどう考える? 重要なのは、相関と因果を混同しないことで、データに基づく正確な分析を行うことです。学校の成績向上や遅刻削減、大学進学実績向上といった課題も、思い込みではなくデータを活用することで、より効果的かつ効率的に解決策を見つけられます。教育関連の文献やデータから情報を読み解く能力を養い、勤務先の学校の課題に対してロジックツリーを用い、仮説を立て、データを集めてグラフ化し、仮説を検証していくことが求められます。特に、度数分布と散布図は非常に有用ですので、積極的に活用していきたいと思います。

「例 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right