リーダーシップ・キャリアビジョン入門

メンバーの力を引き出す秘訣とは?

エンパワメントの本質は? エンパワメント・リーダーシップは、メンバーに権限を委譲し、自律性を高めることで彼らの能力を最大限に引き出すスタイルです。このリーダーシップを実行するためには、いくつかのポイントがあります。 目標設定はどう決める? まず、目標設定が重要です。メンバーには、その能力を少し上回る難易度の目標を設定し、それを達成するための計画は本人に任せます。必要であれば支援も提供します。良い目標を設定するためには、メンバーに適した仕事を余裕を持って依頼し、彼らの本音をよく知ることが求められます。これが結果として、メンバーのやる気やモチベーションを高めます。 対応方法はどうする? さらに、依頼内容に応じた対応方法も重要となります。例えば、「分からないからできない」場合は丁寧に説明し、「分かったけどできない」場合には不安を解消するための対話を行います。「分かった、できるがやりたくない」場合には、メンバーがやりたくなるような仕事の渡し方を工夫します。重要なのは、合理的な説明よりも、相手の情緒的な気持ちを大切にすることです。 質問力で成長する? また、メンバーの育成には質問力が重要であり、特にオープンクエスチョンの活用が鍵となります。これによって、メンバーの思考を深め、自律的な問題解決能力が引き出されます。 実践事例は何か? エンパワメント・リーダーシップを活用するため、いくつか具体的な取り組みを行っています。一つは、定期的な1対1のミーティングで、オープンクエスチョンを活用してメンバーの思考を促し、進捗を確認しています。権限委譲では、プロジェクトやタスクをメンバーに委譲し、彼らの自律性を高めて成功体験を積ませています。また、メンバーの成果には具体的で建設的なフィードバックを提供し、ポジティブなフィードバックを通じてモチベーションを高めることを重要視しています。 これらの取り組みを通じて、メンバーが最大限に力を発揮できるよう支援し、組織のミッションを達成する強力なチームを築くことを目指しています。

データ・アナリティクス入門

数字とグラフで見える成長

比較や仮説の意義に迫る? 本教材では、比較や仮説思考の重要性を改めて確認しました。大量のデータを扱う際、数字化しグラフなどで可視化することで、情報がより明確に把握できることが示されています。 代表値はどう選ぶ? 代表値として、単純平均、荷重平均、幾何平均、そして中央値が挙げられました。それぞれ、状況に応じた使い分けが必要です。たとえば、ばらつきが大きい場合や外れ値がある場合には中央値が適している一方、成長率などの変化割合を捉えるためには幾何平均が有効です。 標準偏差を理解する? また、データのばらつきを理解するためには、標準偏差が重要な指標となります。標準偏差は、平均値との差の二乗和の平均の平方根として計算され、数値が小さいと密集、大きいとばらつきがあることがわかります。正規分布の場合、平均値から標準偏差の2倍以内に約95%のデータが収まるという2SDルールも、実感としての起こりにくさの目安となります。 グラフの効果は何? まとめとして、代表値とばらつきを用いてデータの特性を把握し、グラフなどの可視化を利用すると、非常にわかりやすく情報を整理できることが強調されていました。具体例を用いた説明は非常に効果的で、内容が実践的に応用できる点も評価されます。 荷重平均の活用は? さらに、データ可視化の具体的な利点や、実際の場面で荷重平均をどのように活用するかについて、さらに考えを深める問いが提示されています。これにより、自らの分析手法を実践的に応用する視点が求められています。 実務でどう活かす? 最後に、実務への応用例として、メンバーの時間外労働の管理が取り上げられました。労働時間が所定の範囲内に収まるよう、グラフを用いて傾向を把握する方法や、外れ値がある場合に特定の商品のデータを除外して全体の傾向を見る手法が紹介されました。また、エクセルを活用して各メンバーの代表値やばらつきを算出し、分析の特性に応じた手法が使われているかを確認することで、より実践的なデータ分析支援に繋げる取り組みが示唆されています。

データ・アナリティクス入門

分析のアプローチで見えた新たな視点

分析とは何を指す? 分析とは「比較」のことを指します。現状を詳細に比較したり、物事を比較することで、解像度の高い理解や把握が得られます。 グラフや数値の算出方法を理解 今回の学習を通じて、具体的な分析アプローチとしてグラフや数値の算出方法について理解しました。データを算出する際には、代表的な数値(代表値)とデータの散らばり(分布)に分け、それぞれに具体的な手法が用いられます。代表値の例としては、単純平均、加重平均、幾何平均、中央値がありますが、特に幾何平均を用いた売り上げ予測の立て方が印象に残りました。また、分布の例としては2SDルールが紹介され、大枠の範囲を考慮した上で平均値を予想する方法が理解できました。 仕事における分析意識の向上をどう図る? ①分析のアプローチに対する仕事の意識 「分析 = プロセス × 視点 × アプローチ」という基本的な考え方を念頭に置き、これらに漏れがないように資料を作成したり、発言するといった意識を持ち続けます。 ②分析のアプローチに対する業務の行動 現状では単純平均を用いて比較することが多いですが、今後は分布やグラフを用いることで新たな気づきを得られるように努めます。 アプローチ方法をどう定着させる? ⓪分析全体の把握およびアプローチ方法の定着化 学習した「分析 = プロセス × 視点 × アプローチ」について、自分の言葉でまとめました。まずは用語や算出方法を含めて暗記し、アプローチ方法を定着させます。 SNS戦略での分析の改善策は? ①SNS戦略での分析の実施 現状では数値を取って把握することが主体で、十分な分析ができていません。今後は、定義に基づいた分析を実施し、比較が必要な場合には代表値や分布を用いて進めます。 データ分析の評価をどう行う? ②データ分析に関する評価 業務上、データから戦略や仮説を立てることが多いため、データに対して視点を持ったりアプローチを探したりすることで、新たな気づきを見つけ、それを共有します。

戦略思考入門

選択と集中で価値を最大化する考え方

選択と集中の再評価は? 選択と集中の重要性を再認識しました。絞ることで価値が高まるという点についても、具体的な航空会社の事例は削除しましたが、大いに納得しました。 新参者の意見をどう活かす? 新参者の意見を聞くという視点が新鮮で、餅は餅屋に任せる勇気が重要だと感じました。多くのケースでこの点が実現できていないことや、提案できていない現状を認識しました。 基準のない選択の課題 選択に向けた方針の整理もまた重要です。基準無き意思決定が場当たり的なものになることを痛感しました。基準を設けるための論点の整理が必要であり、拠り所となる言葉が二律背反の中から生まれることを理解しました。 トレードオフの考え方の鍵は? 選択と集中を実践する上でトレードオフの考え方が重要であり、効用の最大化ポイントを見つけることが鍵です。構造化してボトルネックを発見することがトレードオフの効用の最大化につながり、効用の無差別曲線の考え方がボトルネック特定に役立つと気付かされました。 戦略と方針の整合性は? 各種戦略や戦術を練る上で前提となる方針を明確にすることが、チームでの営業戦略やクライアント企業での各種戦術の展開に適応できると感じました。方針に沿った選択と集中、すなわち「捨てること」の提案もまた重要です。クライアント企業が本当にマーケティング体制を持つ必要があるのか、その選択が何に価値を載せるべきなのかを提言することが求められます。 自身の営業方針の設定法 自身の営業活動においても、外部環境や内部環境の整理、自身の成長目標と照らし合わせて方針を明確に設定する必要があると感じました。これにより、アプローチすべきターゲットランクやテーマを導き出すことができます。 クライアント支援での意思決定の明確化 最後に、クライアント企業の現在の支援においては、今やっていることの方針や意思決定に基づいた理由を明確にすることが重要です。その意思決定が難しい場合、その難しさの論点を洗い出すことが必要です。

クリティカルシンキング入門

相手の心を掴むグラフ・スライド作成方法を学ぶ

グラフ作成で気をつけることとは? 相手の立場に立ってグラフやスライドを作成することが重要です。以下が学んだポイントのまとめです。 まず、グラフに関して以下の点を注意しました。 1. グラフには慣例があるため、基本的なルールに従うことが重要です。突飛な見せ方よりも、一般的な方法をベースにすることが大切です。 2. 相手が見たときに、「違い」や「強調したい部分」が直感的に理解できるかどうかを確認することが必要です。 スライド作成の効果的な方法は? 次に、スライドについては以下の点に注意しました。 1. 端的に伝えたいことが伝わるかどうかを重視しました。文字の大きさや色の使い方も重要です。 2. 文字の色には連想される色があるため、意図がしっかり伝わる色を選ぶことが大切です。 文章力向上のための工夫は? さらに、文章力に関しては以下を学びました。 1. 文章には目的があり、その目的を明確にすることが重要です。 2. 読み手を意識して、誰に対して書いているのかを考える必要があります。 3. 内容自体も重要で、読んでもらえるかどうかを常に意識することが大切です。 特に、読んでもらうための工夫として以下の点に注意しました。 1. タイトルのアイキャッチは非常に大切です。 2. 読み手がイメージしやすい構成や言葉遣いを工夫することが重要です。 成果をどのように活かすか? また、学びを活かして社内報告用のプレゼン資料や、新幹部向けの研修プログラム作成に取り組みました。報告資料は多数の人が見るものですので、フィードバックを元に改良を繰り返していきます。 軸は「読み手が面白く、学びを行動に移したいと思える」ことを目指して、以下のことを行いました。 1. 実際に研修を実施して、5段階アンケートをMicrosoftフォームスで実施する。 2. その結果を定量的にデータ化し、フィードバックとして活用する。 以上のポイントを踏まえて、自分の仕事に役立つスライドや文章構成を意識して取り組んでいきます。

データ・アナリティクス入門

振り返りから導く次の一歩

数字で全体像を? まず、業務やレポート作成において、まずは数字を俯瞰して全体像を掴むことが大切です。比較しながらどの部分に差があるのかを見極め、その差が良いのか悪いのかを判断する、この基本的な現状把握のプロセスは非常に重要です。その際、大切なのは数字を正しく読み取り、自分の固定概念や先入観にとらわれずに客観的な視点を保つことです。 改善策は何故必要? 次に、改善策を検討する時は、原因についてできるだけ多角的に洗い出すことが求められます。さまざまな角度から原因や背景に目を向け、徹底的に分析することが、より実効性のある対策につながります。そして、対策を決める際には、目指す「あるべき姿」を明確にする必要があります。一見抽象的に聞こえるこの目標ですが、具体的な数字や例を挙げることで、現状とのギャップや将来への差異がより分かりやすくなると思います。たとえば、ある地域で学生数がトップになる学校を目標とする場合、現状との違いを具体的に示すことで、方針書や会計資料にも説得力が生まれるでしょう。 情報伝達はどうして? また、日常の業務報告資料や案件ディスカッションの際には、相手に理解してもらうための工夫が必要です。例えば、MICEの視点やロジックツリーといった手法は、情報を論理的かつ整理された形で伝えるのに役立ちます。社内で進めている施策の背後には、必ずあるべき姿とのギャップが存在しており、そのギャップを埋めるための取り組みであると考えながら、経営層の視点も取り入れて検討することが重要です。 なぜ意識して整理? 普段の業務—電話、メール、立ち話など—においても、意識して考えを整理する習慣が役立ちます。私自身は、考えを紙に書き出して見える化し、その内容を仲間と共有することで、抜け漏れや重複をチェックしています。一人で行動する限界を感じるときは、複数の視点や他のメンバーからの意見を取り入れることを忘れません。こうすることで、自分の考えに固執せず、より広い視野で状況を捉えることができると実感しています。

クリティカルシンキング入門

小さな分解で見える大発見

分解で見える真実は? 分解を行うことで、従来の全体からは見えなかった事実を得ることができると実感しました。例えば、年齢などの区分を均等に分けるのではなく、生データの特徴に合わせた切り口で分解することが重要であると知り、自分自身も改善すべき点だと思いました。実際、いくつかの切り方を試して分析を重ねることで、より適切な理解が深まると感じています。 切り口は何が違う? また、従来は層別分解が得意でしたが、変数分解やプロセスごとの分解など、異なる切り口も学ぶことができました。分解を始める前に全体像を明確に定義すること、すなわち目的を明確にするというクリティカルシンキングの基本が、データ分析においても非常に重要であることを再認識しました。 ウェブの解析はどう? 私の業務では、ウェブシステムのパフォーマンス分析や運用業務の効率化に取り組んでいます。パフォーマンス分析では、レスポンスタイムやエラー率など、様々な指標を機能別、リクエスト別、時間帯別に分解して検証することで、新たな知見を得る可能性が広がっていると感じています。 業務効率の見直しは? また、運用業務の効率化においても、単に忙しさを感じるのではなく、実際に業務に費やす時間を計測し、プロセスや対応内容ごとに分解することで、根本的な原因や改善ポイントが見えてくると実感しています。 ラベリングはどう大切? さらに、データを正確に分解して活用するためには、収集や計測の段階で最小単位までしっかりとラベリングすることが不可欠だと感じました。全体の傾向は平均や合計から把握できるものの、細分化したデータを分析するには、各サンプルがどのグループに属するのかが明確でなければなりません。 知見の信頼はどう生む? そのため、今後も日常的にデータを分解して分析することを念頭に置き、様々な切り口から知見を得られるよう努めたいと思います。いかなる知見が得られても、それが確かなものであるか否かを常に疑い、裏付けを求める姿勢を維持していきたいと考えています。

データ・アナリティクス入門

データ分析で見抜く!成功の秘訣とは?

代表値や散らばりは? 今回の学びでは、データ分析における重要なポイントを整理しました。まず、定量分析を行う際には、「代表値」と「ちらばり」の両方を把握することが重要です。代表値には、単純平均や加重平均、幾何平均、中央値があり、それぞれの特徴を理解することでデータの中心を捉える手助けになります。また、平均値を算出する際には、外れ値の確認が不可欠です。ちらばりには、標準偏差や正規分布があり、それらを活用してデータの散らばり具合を把握します。さらに、データをビジュアル化することで、特徴的な傾向が捉えやすくなりますが、その際には正しいグラフを選択することが求められます。 相関か因果か? 次に、相関関係と因果関係の分析についてです。相関とは二つの要素がどのように関連しているかを示すものであり、因果関係とは原因と結果の関係です。これらをセットで分析し、次の打ち手を考察することが重要です。しかし、因果関係は誤認しがちであるため、自分の都合の良い分析結果に偏らないよう、常に意識して考えることが必要です。 分析は比較ですか? 今回の復習では、分析とは比較であることを再確認しました。問から仮説を立て、データ収集を経て、それを検証するというプロセスを繰り返すことが基本です。インパクトやギャップ、トレンドなど様々な視点からデータを分析し、グラフや数値、数式を使うことが有効です。 ツール選択はどう? 現状では、時系列分析を多用しており、分析ツールとしてTableauやSPSSを利用しています。これにより、顧客データや売上データ、プロモーション費用などを扱っています。具体的な分析例として、まず相関関係の分析においては、売上とプロモーション費用との関連を見て、どのプロモーションが効果的であるかを判断することを目的としています。また、パレート分析では、顧客をグルーピングし、どの顧客が優良であるかを可視化しています。これにより、優良顧客の特徴を把握し、効果的な販促やプロモーション計画の立案に活かしていきます。

データ・アナリティクス入門

仮説で解く!未来への挑戦

仮説分類はどう理解? 仮説の分類について学んだことで、結論の仮説と問題解決の仮説という二つの考え方を理解することができました。結論の仮説は、ある論点に対して仮の答えを示すもので、たとえば、ある飲料メーカーがノンアルコール商品の健康面へのアピールを通じて客層を拡大した事例が印象的でした。一方、問題解決の仮説は、現状の現象から原因を究明し、対策や予防策を講じるための仮説であり、データの収集と分析能力の向上が不可欠であると感じました。 仮説で説得力は増す? また、仮説を立てることで検証マインドが育ち、他者に説明する際の説得力が増すことを実感しました。エビデンスに基づく行動が、具体的な改善策の実現を後押しすると考えています。 減少原因は何? 具体的な事例としては、まず勤務先の大学において、受験者数が過去4年間で大幅に減少している現状があります。この原因を解明し、定員確保につなげるためにも、仮説の活用が大変有効だと感じています。 精神問題はどう見る? さらに、偏差値の高低にかかわらず、精神的な問題を抱える学生が増加している点にも直面しています。ADHDやASD、ゲーム依存などの問題が見られ、これが原因で学生間や教職員とのトラブル、保護者からの苦情、さらには退学や留年の増加につながっていると考えています。これらの現象について、過去の研究や調査、実践活動報告を参考にしながら、本学での適切な対策を検討するために、問題解決の仮説を立てて取り組む必要があると思います。 対策の進め方はどう? 具体的には、まず学生相談室や担任、教職員へのアンケートを実施し、各部署からの情報を集約します。次に、問題とされる事案の件数や種類、これまでの対応内容とその結果を整理し、国のガイドラインやマニュアルと照らし合わせることが求められます。さらに、他大学で実施されている取り組み事例を調査し、本学で実施可能な対策案を策定します。その際、専門知識を持った人材や協力可能な関係機関との連携も視野に入れる方針です。

戦略思考入門

新規事業への挑戦と差別化戦略の本質

顧客視点が差別化の鍵? 差別化戦略を考える上で、どの顧客に届けたいかを決めることが重要だとわかりました。顧客にとって価値が訴求できるか、固定観念に縛られず顧客視点で競合を意識することが、施策を考える上での重要なポイントです。また、模倣困難性の構築には歴史条件や因果関係の不明性、社会的な複雑性が絡んできて、単なる技術力だけでなく自社独自の顧客との関係性も含まれることが理解できました。どのようにそのネットワークをビジネスの中で活かしていけるか、今後考えていきたいです。 新規事業において別物を考え続ける理由は? 特に印象に残ったのは、動画の中の「ちょっとした差異ではなく、全く別物を考える」という言葉です。新規事業を考える上で、既存の仕組みの中にアイデアを無理やり入れ込もうとするのではなく、新しい仕組みを考え続けたいと思います。 ビジネスモデルの検討に重要な視点とは? 自身の業務は新規事業開発であり、自社の強みや独自性を入れ込みながらどのようなビジネスモデルが考えられるか検討する必要があります。まず、誰に対して価値を提供するのかを考え、3CでいうCompanyの分析をしっかり行うことが大切です。ただ、自社の独自性を活かしたモデルを意識して考えるのは非常に難しいと感じました。 フレームワークの実践で得られる効果は? また、差別化戦略では今後のビジネスプランの立案において、どのような施策を打ち出していくかが重要です。VRIO分析を用いて説明することで、より納得感のあるものができると感じました。 テクノロジーで可能にする新しいビジネスとは? 学んだフレームワークを身近な企業で実践し、チームメンバーに共有することも考えています。例えば、SWOT分析やバリューチェーン、VRIO分析を既存の事業で行ってみることです。現在の業務においては、自社の強みや独自性を考えるのは難しいので、「テクノロジーで可能になるビジネスは何か」という観点で間口を広げて考えてみたいと思います。

戦略思考入門

本質を追求する戦略習得の旅

戦略はどう明確に? 戦略立案においては、最初に「誰に対して、どのような価値を提供するか」を明確にすることが重要です。戦略や手法は、その後に検討すべき手段であり、それ自体を目的とするべきではありません。しばしばこの順序が逆転しがちで、手法が先行してしまう傾向があります。 差別化の秘訣は? 差別化に関しては、見かけだけでなく顧客にとって本質的な価値を持つ差別化が必要です。持続的な競争優位を築くには、競合他社が簡単に模倣できない要素を見出すことが不可欠です。差別化戦略は単に「他社との違いを作る」ことではなく、「顧客価値の創造」と「持続可能な競争優位の構築」を目的としています。これには、VRIOフレームワークが実践的なチェックリストとして有効であることを学びました。 ジムの真価は? 実例としては、あるフィットネスジムのように、「他のジムよりも高価格」であることが表面的な差別化です。しかし、その本質的な価値は「確実な結果を得られる安心感」や「マンツーマン指導によるサポート」、「高額投資による強制力」などが挙げられます。そして、それらの価値を持続的に提供するために、組織としてどのような体制を整えるかが重要です。 VRIOの立ち位置は? まずはVRIOフレームワークで自社の立ち位置を明確にしたいと思っています。私たちが提供できる価値や他社と比べての希少性、模倣困難性、組織としての行動を整理し、それを新規営業での提案資料として活用することが目指すところです。 既存客価値はどう? まず既存クライアントへの価値提供を強化し、VRIOフレームワークの各項目を確立します。たとえば、在庫管理システム案件の着実な遂行や生成AIを活用した業務効率化の提案資料作成、データ分析レポートの質的向上に取り組んでいます。 外部資源はどう活かす? さらに、外部リソースの確保も進めています。具体的には協力会社やフリーランスの選定、業務の切り分けの検討、引継ぎドキュメントの準備を行っています。

データ・アナリティクス入門

問題解決のプロセスを極めた学び

どうやって問題を整理? 問題解決の第一歩は「何が問題ないのか」を具体的に整理することです。この際、関係者間で「あるべき姿」と「現状」に対する共通認識を持つことが重要です。基本的な流れは、①「何が問題か?」②「どこに問題があるか」③「なぜ、問題が起きているか」④「どうするか」ですが、必ずしもこの順序に縛られる必要はなく、各ステップを行き来することが求められます。 ロジックツリーは有効? ロジックツリーの活用により、全体像を意識しやすくなります。MECE(Mutually Exclusive, Collectively Exhaustive)の考え方に基づいて、意味のある方法で問題を分けることが肝要です。 売上回復の道は? 売上が低迷している商品のリニューアルを考える際には、売上を回復させる目標を新規購入者の獲得なのか、離脱者の呼び戻しなのかによってターゲットやパッケージの方向性が変わってきます。関係者間で売上回復の基準を共通認識として持っていることが必要です。提案を説得力あるものにするためには、MECEを活用して効果的な方向性や代替案を提示します。 市場分析は足りる? プロダクトアウトの新商品の方向性を検討する場合には、市場分析が不足している段階で商品化が決定されたケースもあります。例えば、コンセプト調査を行ったものの生活者の反応が芳しくない場合、ロジックツリーを通じて問題の仮説を立て、検証し、解決策を模索します。 選択肢は適切? アンケート調査では、選択肢設定にMECEを用いることで効果的な結果を得ることが可能です。 プロセスの流れは? 商品化作業に取り組む際のプロセスは以下の通りです。まず、問題の共通認識を揃えるためにデータ収集を行い、関係者間で問題認識を共有します。次に、チームでロジックツリーを用いて網羅的に「Where」「Why」「How」の案を出し、それに基づいて方向性の第一候補と代替案に絞り込みます。その後、経営陣にこれを共有します。

「例 × 本」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right