デザイン思考入門

生成AIとデザイン思考で切り開く挑戦

生成AIの使い方は? 生成AIを効果的に使いこなしている皆さんの姿に驚きました。また、提案されたアイデアが多角的な視点から考えられており、誰も同じコンセプトで作成していなかった点が印象的でした。自分もどの部分でユニークな回答を生み出せたのかを見直し、今後の取り組みに活かしていきたいと考えています。 課題解決の流れは? デザイン思考入門で学んだ共感、課題定義、発送、試作の手法を総務業務の改善活動に積極的に取り入れていきます。まずは、様々なイベントに積極的に顔を出して情報を収集し、皆さんが抱える問題点を洗い出します。その中で特に意見が多かった項目をもとに課題定義を行い、場合によっては実際の現場の声を反映したペルソナ作成も検討しますが、生成AIを活用することで自分では捉えきれない視点も網羅できるため、その力も借りながら進めていくつもりです。

データ・アナリティクス入門

仮説と実践で拓く最適解

プロセス改善の秘密は? 問題解決のステップの枠組みを学ぶ中で、複数の切り口から解決策を検討するプロセスを整理する方法の大切さを実感しました。各プロセスごとに重要点に沿って仮説を立て、判断基準を明確にすることで、より的確な解決策が導き出されると感じました。また、A/Bテストを活用した検証手法からは、有効性の高い方法を見出す「実践的な知識」を得ることができ、今後の業務に大いに役立つと考えています。 アンケート改善のヒントは? 顧客アンケートを実施する際には、回答率向上のためにA/Bテストを導入し、仮説を立てながら改善点を洗い出すプロセスを試してみたいと思います。具体的には、EDMやイベント等を活用する方法の有効性を検証し、アンケート収集方法の効率化および精度向上に繋げることで、実務に直結する解決策を見出すことができると期待しています。

クリティカルシンキング入門

主張と根拠で磨く思考の一歩

問いと答えで学ぶ理由は? 今週はクリティカルシンキングの振り返りを行い、WEEK1の自分の回答を再確認しました。問いと答え、すなわち主張と根拠のシンプルな構成が印象的で、問いを明確に設定し、その問いだけに集中して回答するという行為の難しさを実感しました。 お客様の課題は核心? また、商談時にはお客様からシステム構築による課題解決のご相談をいただくことが多い中で、お客様の課題が何か、本当にその課題が核心なのか、そしてその解決策が改善につながるのかを、主張と根拠をセットで検討する必要があると感じました。講義で「早く答えを導き出すには常に考え続けることが大切」という話が印象深く、思考の切り替えを意識して反復することで、そのスピード感を自分のものにしたいと思います。今後は、何かを考える際に必ず主張と根拠を意識する行動を心がけていきます。

クリティカルシンキング入門

グラフで探る新たな気づき

グラフ選定はどう? データ分析においては、単に数字の羅列を眺めるだけでなく、さまざまな視点から検討し、グラフ化することの重要性を実感しました。グラフを作成する際は、どのグラフが適切か、軸区切りや要素の分け方をどうするかなど、一つの方法に固執せず、「本当にそれだけで良いのか?」という視点を持ちながら、複数のグラフを試作することで新たな傾向や示唆に気付くことができました。 伝え方はどう? また、研修で「わかりやすく伝える」ことを重視する観点から、スライドに掲載するデータの見せ方にも改善の余地があると感じました。同一のグラフであっても、絶対値と相対値のどちらが適切かを検討したり、視覚的に訴える矢印を加えるなどの工夫が効果的です。多少の手間や時間はかかるものの、それらの工夫が最終的に伝えたい内容を確実に伝えるための近道になると思います。

データ・アナリティクス入門

仮説から見える実践の道

目的は何でしょうか? まず、分析に着手する前に、目的意識を強く持つことが重要だと感じています。どのようなデータを用い、どのような加工を施して活用するのかを熟考することで、分析の精度が高まると思います。 仮説設定の秘訣は? 次に、仮説を立てることが分析の出発点であり、実際の数値や製造指標を軸にポイントを絞り込むことが有効です。数字を単に羅列するだけではなく、各項目の重要度や意味を十分に考慮したうえで比較分析を行うことが大切です。 分析結果はどう活かす? また、これらの分析は、次の四半期の実績検討に向けた具体的な資料となり得るため、単なるデータの把握に留まらず、実践的なアウトカムにつなげていく必要があります。日常業務においても、データの活用状況を見直し、改善のヒントとする取り組みが求められていると実感しています。

アカウンティング入門

価値を見つめる毎日の学び

顧客の価値は何か? 事業を運営する上で大切なのは、まず対価を支払ってくれる顧客が存在することです。そして、その顧客にどのような価値を提供するかが事業の出発点であると実感しました。仕入れや費用は、あくまで価値提供の手段に過ぎないという認識が改めて必要だと感じています。 振り返りの意義は? また、常に顧客に対してどのような価値を提供できているかを振り返ることが重要です。最新の情報を収集し、顧客に役立つ内容を提供する努力を怠らず、日々の業務の振り返りや学びを意識することが改善への糧となると実感しています。 手段構築の工夫は? 目的を明確にし、そのための手段について検討する際は、柔軟な発想が求められます。従来の定型的なパターンに縛られず、他者の考えを取り入れることで、新たな気付きや発見が得られることに驚きを覚えています。

データ・アナリティクス入門

数字が導く学びの実験室

ボトルネックはどこ? データをプロセスごとに分解してボトルネックを特定すると、問題の把握が容易になります。各フェーズの転換率を算出することで、定量的にボトルネックを明らかにでき、値が異なった場合でも率に統一して比較することが可能です。また、ある仮説とその対概念にあたる仮説を併せて検証することで、思考の幅を広げ、複数の仮説を判断基準に基づいて評価し、絞り込みを行います。 A/Bテストで何が? A/Bテストでは、比較するグループ間の介入の違いをできる限り絞り込むことが求められます。これにより、広告のA/Bテストや販売実績の評価において、クリエイティブにどの要素が反映されるべきかを具体的に検討できます。施策をプロセスごとに分解し、定量的な評価を実施することで、成功要因や失敗原因を明確にし、次の改善策の立案に役立てています。

データ・アナリティクス入門

小さな気づきが大きな成長を生む

どう原因を見極める? 課題解決においては、まず対象の業務プロセスを細分化し、どの段階が問題の原因となっているかを明確にすることが重要です。自分の感覚だけで原因を決定するのではなく、有識者へのヒアリングなどを通じてプロセス全体を整理し、どの部分に注力するかを正しく見極める必要があります。どのプロセスを改善すれば、課題解決に大きな効果が期待できるかをしっかり検討することが求められます。 何をテストするの? また、改善案の効果を正確に判断するためには、A/Bテストの導入が有効です。改善前後の両方のパターンを同じ条件下でランダムにテストすることで、施策の効果を客観的に評価できます。さらに、システム導入のトライアルにおいては、現行システムと新システムを同時に使用することで、正確な効果測定が可能となるよう進めることが望まれます。

データ・アナリティクス入門

仮説で始まる主体的成長の一歩

仮説はどこから始まる? 仮説を持つことで、対象への関心が深まると同時に、問題意識も高まるという考え方は非常に理にかなっていると感じます。仮説がない状態では、物事への関心が浅く、問題意識も十分に芽生えにくいものです。しかし、一度仮説を立てると、その正否を自ら確かめようという意欲が生まれ、自然と検証に積極的に取り組むようになります。その結果、案件に対するコミットメントが強化され、より主体的に取り組む姿勢が養われます。 改善提案はどのように? この考え方は、業務における課題抽出や改善提案の場面にも応用できると感じます。たとえば、顧客対応の効率化や新しいサービスの導入検討において、仮説を立てて検証を重ねることで、単に課題を指摘するだけでなく、解決策の妥当性を自分自身で確認しながら主体的に進めることが可能になります。

クリティカルシンキング入門

問いが導く課題解決のヒント

問いの本質とは? イシューを考える際は、まず「問いは何か」を明確にすることが重要です。その上で、課題分析に取り組むと、思考が横道に逸れることを防げます。また、問いをチーム全体で共有することで、組織としての方向性が一層明確になると感じました。 課題解決はどう考える? 例えば、社員のエンゲージメント調査で評価制度の納得度が低いという結果が出た際、課題の真因を探り、解決策を考える必要がありました。その際、評価制度を細かく分解して課題分析を始めたため、本来解決すべき問いが何であったか見失い、方向性を逸れてしまった経験があります。まず「社員の評価納得度を改善するためにはどうすべきか」という問いを立て、納得度を要素ごとに分解し現状を把握しながら課題設定を行えば、よりスムーズな検討が可能だったのではないかと考えます。

データ・アナリティクス入門

データ分析で仮説と検証を学ぶ

仮説の立て方を見直すには? 今まで、データ分析において仮説から検証のプロセスをなんとなくで行っていたが、複数の仮説を立てることや、網羅性を持たせることはあまり意識していなかった。また、立てた仮説の検証だけでなく、反対の事象を裏付けるデータも収集することで、より説得力のある仮説検証ができる点も意識すべきだと感じた。 データ分析を業務にどう活かす? 今後、業務でデータ分析を行う際には、仮説立てから検証までのプロセスを意識的に組み込むようにしたい。現在取り組んでいる運転資本の改善についても、問題がどこにあるのか(Where)を仮説立てし、既存のデータから分析を行うようにする。そして、Whereが特定できた後には、なぜその問題が生じたのか(Why)の仮説を立て、その仮説を立証するための分析方法を検討するつもりだ。

クリティカルシンキング入門

多面的理由で心を動かす説得

説得理由の整理はどうする? 相手を言葉で説得する際、説得理由によって「勝ち筋」が変わると実感しています。論理的な説明だけでは、相手の懸念や関心に対する理由付けが十分でなければ納得を得ることは難しいため、多面的な理由の検討が必要です。 説明活動の課題は何? これまでの説明活動では、上長や他部署に対して、結論部分は大筋で合意を得られたものの、理由の部分で相手の懸念を解消できず、説明をやり直すケースが多くありました。原因は、相手の立場や考えを十分に考慮せず、単一の視点で理由付けをしていた点にあると考えています。 実践改善の方法は? 今後は、ピラミッドストラクチャーなども活用し、幅広い理由を整理することで、相手に伝えるべきポイントを的確に選別し、より効果的な説明を実現していきたいと考えています。
AIコーチング導線バナー

「検討 × 改善」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right