データ・アナリティクス入門

データに秘めた学びのヒント

数値とグラフの違いは? 今週は、データ比較のアプローチとして、数値に集約する方法とグラフ化して視覚的に捉える方法の両面から学びました。数値に集約する際は、代表値として単純平均を用いることが多いですが、外れ値が混ざると平均値が影響を受けやすいため、その場合は標準偏差を活用してデータのバラつきを確認します。ヒストグラムを用いることで、グラフから傾向を読み取り、背景を推察する仮説思考の大切さも実感しました。 データばらつきの見方は? 標準偏差は分散の平方根であり、自然現象のバラつきが正規分布(釣鐘型)に従う場合、2SDルールで求めることができます。ただし、ピークが複数あるヒストグラムでは正規分布とならない点には注意が必要です。 成長率の計算は? また、成長率などの変化を計算する場合は、各年度の成長率を掛け合わせた数値のn乗根で算出される幾何平均を用います。複数のデータの平均を求める際、外れ値の影響がある場合は単純平均ではなく中央値を用いる方法も取り入れています。 散布図の意義は? 要素が2つの場合、散布図を用いて数値の関係性を視覚化し、相関係数によりその関係を数値化します。相関関係を直線で表現するために単回帰分析を適用し、相関係数はR、決定係数はR²として示されます。決定係数は、散らばりの何%が横軸の要因で説明できるかを示しますが、相関が必ずしも因果関係を意味しないことを改めて認識しました。 フェルミ推定を使う? さらに、データ収集の前に成果をもたらす要因を構造化するため、フェルミ推定を活用して方程式を作るモデル化にも取り組みました。フェルミ推定は、売上を上げる施策の検討にも用いられ、多角的に捉えてアクションに結びつける手法として有用だと感じました。たとえば、薬局の売上伸長を検討する際に売上を分解し、複数の施策を検討することで、利益の方程式と組み合わせてより分かりやすい説明が可能になると感じています。 相関と因果の違いは? また、気温とビールの相関性の事例を通して、これまで取り入れてこなかった相関性の視点を業務に役立てたいと考えました。具体的には、患者の平均待ち時間と減少率、在庫品目数と医薬品廃棄率、管理者への研修時間と理解度テストの結果など、さまざまな原因と結果の関係を散布図にして検証することで、業務改善につなげる手法を学びました。なお、常に相関と因果は一致しない点を念頭に置いて取り扱う必要があります。 適切なグラフ選びは? 最後に、これまでなんとなく選んでいた棒グラフや折れ線グラフに代えて、根拠を持って適切なグラフや散布図を選択する重要性を再認識しました。売上アップのための各施策を列挙し、売上と施策の関係を散布図で表すとともに、グラフの縦軸のメモリを工夫して読みやすさを追求します。その上で、相関係数や決定係数を算出し、どの施策が最も効果的だったかを分析し、上司や部下、部内と情報を共有していきたいと考えています。

データ・アナリティクス入門

小さな仮説、大きな変革

データ分析の効果は? 今週の学びでは、データ分析を活用することで、感覚的な判断から離れ、客観的な事実に基づいた意思決定が可能になると実感しました。特に、仮説を立てた上でデータを収集・検証するA/Bテストや、アンケートの結果を定量的に処理しグラフや数字で確認する技術は、マーケティングやサービス改善に直結する有効な手段であると理解しています。今後は、業務後のアンケート集計やSNS施策において、小規模な仮説検証を取り入れ、データを活かした改善活動を進める必要性を感じました。数字で成果を語る習慣や改善に向けた意識を日々実践し、継続的な取り組みが未来を変える力になると学んだ一週間でした。 講座受講促進の秘訣は? これまでの学びを自分の仕事にあてはめると、講師養成講座受講促進の例として以下のように整理できます。まず、仮説を立てる段階では、「40代女性は講座に興味を持っているものの、日程や価格が申し込みの障壁になっているのではないか」という仮説を設定します。次に、過去の資料請求や問い合わせ、説明会参加者の属性データ、SNS広告やランディングページ(LP)のクリック数、コンバージョン率といったデジタルデータを収集し、申込者と非申込者の属性やアクセスから申し込みまでの動線の違いをグラフで見える化します。年代別、職業別、流入経路別にヒートマップや棒グラフで傾向を把握した上で、例えばLPに掲載するキャッチコピーや導線を2パターン用意してA/Bテストを実施し、効果の高いパターンを検証します。最後に、データの変化を定期的に追い、仮説の修正や新たな施策の追加を繰り返すことで、改善活動を継続していきます。 問題解決の手順は? また、ライブ授業で紹介された問題解決のステップ「What, Where, Why, How」に基づく行動計画も立てました。まず【What】として、講師養成講座の説明会参加者や資料請求者数に対して、受講申込みへの転換率の低さや、特定の層(例:30〜40代女性、地方在住、育児中)の申し込みが伸び悩んでいる現状を整理します。次に【Where】では、SNS広告からLPクリック、説明会参加、申込みへと至る導線の中で、LPでの離脱、説明会後のフォローアップ不足、そして広告のターゲットと実際のコンテンツの連動性不足といった課題があると考えます。【Why】においては、SNS広告の内容がターゲットのニーズ、例えば「副業」や「子育てとの両立」に十分応えられていないこと、LPの構成の不明瞭さ、説明会の内容と申込みへの動線が断絶していることが原因として挙げられます。最後に【How】として、SNS流入データや属性情報をもとに複数の仮説を抽出し、属性別のクリック率、離脱率、申込率をグラフ化して問題箇所を特定、A/Bテストで各施策の効果を検証し、成果の高いアプローチを標準化して他のターゲットにも応用していく、という一連の具体的な対策を検討しています。

データ・アナリティクス入門

現場を変える3つの発見

採用課題は何だろう? 総合演習で採用のボトルネックを特定するパートは、私自身の業務に十分活かせると感じました。実際、自社の採用活動では、1次面接には応募があっても2次面接への参加率が低い現状がありました。面接設問の内容や、面接メンバーにおける若手比率の不足といった点が、思いつき的な対応に陥っていたと反省しています。候補者の立場に立って考える視点が欠けていたことが大きな課題であると痛感しました。 営業検証はできてる? また、営業面ではカスタマージャーニーマップを作成していたものの、どこにボトルネックがあるのか十分に検証できていなかったと感じました。分析の観点からは、ジャーニーをより細かく区切る必要性があると考えます。境界線が曖昧なために実際の検証が困難になってしまい、顧客の心理変化を後で分析できる形で設計することの重要性を再認識しました。 営業戦略はどう進む? <営業データを活用した営業戦略の立案> 現在、成約率向上という課題に対応するため、これまでの商談データを活用して再検証を進めたいと考えています。以前から取り組んでいたものの、講義を受けたことでデータの粒度が粗い点に気付かされました。また、文章化やビジュアル化が十分に行われていなかったため、組織全体の納得感にも課題がありました。構造化データのみならず、商談履歴などの非構造データも組み合わせ、優先順位を明確に決定することで、より効率的な営業戦略の立案を目指します。 UX向上はどう進める? <サービス利用データを活用したUX向上施策の立案> SaaSサービスの活用状況について、アクセスログを精査し、実際に利用されている機能と利用されていない機能を分類します。利用されていない機能については、その原因を分析し、仮説を立てた上で、機能の改善や場合によっては廃止も検討する計画です。具体的には、以下のステップで進めたいと考えています。 成約率低下はなぜ? <営業データを活用した営業戦略の立案> ・まず、成約率が低い理由について仮説を立てる。 ・セグメント別や担当者別の成約率、さらに各営業ステップごとにボトルネックを抽出する。 ・低い成約率のセグメントや、担当者による影響、どのステップに問題があるのかを検証し、原因を明らかにする。 ・その上で、具体的な解決策を検討する。 使われない理由は? <サービス利用データを活用したUX向上施策の立案> ・まず、データウェアハウスからアクセスログのデータを抽出する。 ・利用されていない顧客について、導入当初から使用していなかったのか、あるいは使用頻度が次第に低下したのかを分類する。 ・なぜ特定の機能が使われていないのか、仮説を立てながら改善案を策定する。 ・顧客インタビューを通じて仮説の検証を実施する。 ・最終的に、機能改善やUX向上、場合によっては機能の廃止を実施する。

データ・アナリティクス入門

論理的思考力を徹底的に学ぶ: 実践例多数!

問題解決のフレームワーク 講座全体を通じて、特に学びとなったポイントは次の通りです。 まず、問題解決のフレームワーク「What」「Where」「Why」「How」の順番で考えることが重要であることです。これにより、問題解決のプロセスが論理的かつ体系的になります。 データ分析の視点は? 次に、数値データを分析する際に漠然と数字を見るのではなく、定量分析の5つの視点(インパクト、ギャップ、トレンド、ばらつき、パターン)を持つことが大切です。これにより、効率性や再現性が向上し、同じ気付きや示唆をより効果的に得ることができます。 また、平均値を取る際には「標準偏差(データのばらつき度合)」という視点を持つことが必要です。仮に平均値が同じであっても、「ばらつきがある」「ばらつきがない」ではデータの意味合いが変わってくるからです。 Howで成果をどう上げる? 問題解決のフレームワークの最後「How」で解決策を考える際には、選択肢を絞り込むための判断基準を明確にすることが肝要です。これにより、成果を上げる可能性が高まり、仮に成果が上がらなかった場合でも、どの判断基準に問題があったのかを振り返ることで、さらなる改善が可能となります。 グラフ選びの新たな視点 関連動画で学んだポイントもいくつかあります。グラフを作成する手順「仮説や伝えたいメッセージは何か?」「比較対象は何か?」「どのグラフを使うのか?」は新しい学びでした。これまでの私は最初から「どうグラフを作ろうか」と考えていましたが、1と2を先に考えることで、自然とどのグラフを使うべきかが見えてくることに気付いたのです。 さらに、マイナスの項目がある場合にはウォーターフォールが有効であることや、何を比較対象とするかによって適切なグラフが異なることも学びました。例えば、ギャップがある場合は横棒グラフやウォーターフォール、時系列やトレンドがある場合は折れ線グラフや縦棒グラフ、散らばりや構成比率を示したい場合はヒストグラムや円グラフ、相関を示したい場合は散布図がそれぞれ適しています。 学びの実践で何が変わる? これらの学びをいくつかの面で活用したいと考えています。まず、自社サービスの課題の明確化や改善に向けて、営業プロセスの課題を整理し、日々の定例ミーティングでチームメンバーと議論を深める場で、得た知識を実践したいと思います。自分だけでなく、チーム全体に学びを共有することで、議論や分析の質を高め、より有効なアクションに繋げたいです。 また、経営分析(財務諸表の比較分析)においても今回の学びを応用するつもりです。四半期ごとに財務諸表を比較分析し、問題を具体的に特定することで、株主への業況説明の説得力を高めたいと考えています。そのためには関連書籍で知識の増強に努めたり、必要に応じて今回のような講座に参加することも検討しています。

マーケティング入門

本音が拓く顧客とのWin-Win

顧客の本音は何? 顧客の真のニーズやペインを捉えることは、何を売るかを決定する重要な要素ですが、その把握は容易ではありません。顧客自身が本当のニーズに気づいていなかったり、真実を話さない場合があるためです。例えば、美容室に行く理由や在宅勤務時の要求など、表面的なものではなく本質的なニーズを追求しなければなりません。 ニーズ具体化の方法は? しかし、真のニーズを追求しなければ価格競争に巻き込まれたり、製品が売れなくなったりするリスクがあります。そこで、顧客のニーズを具体的に捉えるためには、デプスインタビューや行動観察といった手法を用いることが重要です。これにより、顧客との対話を通して本音や潜在的なニーズに近づくことが可能となります。 強みとネーミングは? また、顧客ニーズを踏まえた上で「自社の強み」や「ブランド力」、さらには適切なネーミングを検討することが、何を売るかを具体化する鍵となります。整理すると、まず自社の強みを再確認し、次に既存顧客へのデプスインタビューや行動観察でニーズ・ペインを分析、そしてその情報をもとにカスタマージャーニーマップを作成し、ネーミングや訴求方法を検討する流れになります。 自社強みの再確認は? マーケティング業務へ落とし込むと、まず自社の強みを再確認し、社内で共通認識を形成する必要があります。導入事例やアンケート結果、さらに市場・製品の分析を通して自社の強みを可視化し、主要製品のコンテンツマーケティングとして、顧客が認識しやすいお役立ち情報を提供することが挙げられます。 対話で本音は? 次に、既存顧客へのデプスインタビューを実施してニーズやペインを深掘りおよび分析し、さらにはウェブサイトのアクセスログや商談記録などから仮説を立てることで、顧客とのより良い関係構築を目指します。そして、これらの情報を基にカスタマージャーニーマップを作成し、顧客の思考や感情に訴えるキャッチコピーやネーミングを考え、サイトコンテンツの改善や新規コンテンツの作成に取り組むのです。 信頼関係の秘訣は? デプスインタビューにおいて、顧客から本音や潜在的なニーズを引き出すためには、企業と顧客がWin-Winの信頼関係を構築することが不可欠です。顧客にとっては自社の事業拡大に直結するメリットがあり、企業にとっては顧客のニーズを速やかに製品に反映させ市場反響を見極めるチャンスとなります。市場拡大に成功すれば、顧客とのパートナーシップを継続し、製品価値をさらに高めることができますし、市場縮小の兆しがあれば自社の強みと外部環境を再考察した上で新たな製品開発に取り組むことが必要となります。 Win-Winの鍵は何? このように、Win-Winの関係を築くためには「製品開発力」「傾聴力」「顧客の選定」の3点が非常に重要であると感じました。

データ・アナリティクス入門

仮説が生む実践データの魔法

分析の基本は? 分析は比較と捉え、どのようなデータを使い、どのように加工し、何を明らかにするかを明確にすることが大切です。さらに、データ分析に入る前には、目的や仮説をしっかり定める必要があります。基礎として、データの種類、統計手法、可視化などの基本概念を学び、ビジネスにおける意思決定や課題発見のためのデータ活用について理解を深めることが求められます。また、実践的な分析手法やケーススタディを通じ、具体的な応用方法を身につけることも重要です。 学びの全体像は? 全体的に、学習の振り返りは非常に明確で体系的でした。データ分析の基本から実践まで幅広く理解されている点は印象的で、今後は具体的な状況での活用例を考えることで、さらに効果的な応用ができると感じます。 活用のヒントは? さらに思考を深めるため、ご自身の業務や日常生活において、今回学んだデータ分析の知識をどのように活用できるか、具体的な場面を想定してみてください。また、データ分析における仮説の立て方について、どのように仮説を形成すると効果的か、具体的に検討してみることをお勧めします。 適用場面って何? 最後に、データを活用する場面を具体的にイメージし、その適用方法を探求してみてください。今後のさらなる飛躍に向けて、引き続き努力を重ねてください。 仮説検証の流れは? たとえば、仮説思考を鍛えるために、ビジネス課題に対して「仮説➣検証➣改善策」というフレームワークを活用することで、原因分析や改善策の構築がスムーズに進むでしょう。また、過去のデータと比較しながらKPIの設定や顧客データの活用を検討し、現在の状況の妥当性を検証することも大切です。 スキル向上は? 今後強化したいスキルとしては、まず論理的思考力を向上させるため、データリテラシーを高め、データの種類や特性を理解して適切な活用方法を判断することが挙げられます。さらに、批判的思考力を養い、データの信頼性やバイアスを見極めながら、より効果的な意思決定を目指してください。また、仮説思考を活用してビジネス課題に対する仮説を立て、実際のデータ分析で検証する実践力も重要です。 フレーム活用は? ビジネス・フレームワークの理解も不可欠です。データをもとに最適なKPIを設計し、事業の進捗を正確に測定・評価すること、そして構造的なフレームワークを実践することで、より整理された分析が可能になります。市場や競合、自社の状況を把握するため、さまざまな分析手法を積極的に活用していきましょう。 伝え方はどう? また、ヒューマンスキルの向上も重要です。データストーリーテリングによって、分析結果をメンバーにわかりやすく伝え、意思決定に繋げる技術を磨くとともに、組織全体でデータに基づいた意思決定ができる文化の醸成に努めることが求められます。

データ・アナリティクス入門

仮説で切り拓く思考と成長の道

仮説はどう捉える? 仮説は論点に対する仮の答えであり、そこから検証や分析を進める出発点といえます。仮説には「結論の仮説」と「問題解決の仮説」という2種類があり、前者は最終的な結論の方向性を先に立て、そこから逆算して必要な情報を集めて検証を進めるものです。一方、後者は起きている問題に対して「なぜそうなっているのか」「どうすれば改善できるか」を探るプロセスであり、What、Where、Why、Howといった問題解決の手法を意識して仮説を立てます。 仮説はどう整理? これまでは仮説を一括りで捉えていましたが、今後はどちらのタイプの仮説に取り組んでいるのかを明確に意識して使い分けたいと感じています。また、複数の仮説を立てることで決め打ちを避け、柔軟な視点を保つことができます。加えて、仮説同士の網羅性を意識し、カテゴリやプロセスといった異なる切り口からの検討は、より構造的なアプローチにつながります。こうした取り組みが、課題設定力の向上にも寄与すると考えています。 どんな経験が役立つ? これまでの業務経験では、「結論の仮説」と「問題解決の仮説」の両方に取り組む機会がありました。特に施策の立案など、結論を先に想定する場面ではフレームや構造を活用し、全体像を俯瞰したうえで結論から逆算して仮説を立てることが効果的だと感じています。一方、日々の業務でデータを確認し、問題を発見・提示する機会が増える中、What/Where/Why/Howのプロセスを意識した仮説立案が、原因特定から改善策の検討までの一連の流れを円滑に進める助けとなっています。 仮説の質はどう上がる? また、仮説の質を高めるためには、網羅性を意識しながらさまざまな切り口で検討する姿勢が重要です。この取り組みを通じて、本質的な課題設定ができ、より実効性のある打ち手へとつなげることができると実感しています。 学習の効果は何? 今回の学習を通して、「結論の仮説」と「問題解決の仮説」という2種類の仮説が存在することを再認識しました。振り返ると、私は「こうすればうまくいく」という結論の仮説に対してやや苦手意識を持っていたと気づきました。 今後の改善はどう? そこで今後は、まずフレームワークを活用して構造的に考えることに努めます。要素分解を通じて仮説を立てやすくし、思考に型を取り入れることで苦手な結論型の仮説も導き出しやすくする狙いです。また、間違ってもよいという前提で自分なりの仮説を積極的に立てることで、完璧を求めず「とりあえずの仮置き」を実践し、言い切る練習を重ねつつ検証を前提とした思考に慣れていきます。さらに、学んだ知識をそのまま受け入れるのではなく、自身の業務や経験に照らして問い直し、アウトプットや振り返りを通じて知識を深め、実際に使える形に育てる努力を続ける所存です。

データ・アナリティクス入門

仮説で読み解くデータの裏側

仮説の意義は? 今週の学習では、どんな状況においても仮説を立てることの重要性を再認識しました。仮説はデータ分析や問題解決の道しるべとなり、何を調べ、どんな情報を収集すべきかを明確に示してくれます。また、代表値だけでデータの全体像を把握するのではなく、その背後にあるばらつきにも目を向ける必要があることを学びました。平均値は全体を簡潔に表す指標ではありますが、ばらつきを加味することでデータの実情をより深く理解できるという点が印象的でした。 データ把握はどう? データの分布を視覚的に把握するためにはグラフを活用することが有効です。ヒストグラムを用いれば分布の様子が、散布図を用いれば2つのデータ間の関係性が直感的に読み取れます。また、標準偏差を理解し算出することで、データのばらつきを定量的に捉え、より正確な分析が可能になるという点も学びました。これらの学びは、特に患者の受診動向分析の現場で大いに役立つと感じています。 具体計画は? 具体的な行動計画としては、以下のステップを実施する予定です。 1. データ収集と整理  ・受診データの抽出:電子カルテシステムから必要な情報を取り出す。  ・データクリーニング:欠損値や誤りがないか確認する。  ・データ加工:分析しやすい形に整える。 2. 仮説構築と検証  ・仮説リストを作成:過去のデータや経験を踏まえ、受診動向に関する仮説を立てる。  ・データ分析:収集データを基に仮説の正否を検証する。 3. 代表値の吟味  ・複数の代表値の算出:単純な受診者数だけでなく、年齢層別、性別、居住地別に平均値や中央値、最頻値などを計算する。  ・代表値の比較:異なる代表値を比較し、データの傾向を把握する。 4. 可視化  ・グラフ作成:受診者数の推移やデータ分布をグラフで表現する。  ・グラフ分析:作成した図表から季節変動やパターンを読み解く。 5. 標準偏差の活用  ・各診療科ごとに受診者数のばらつきを標準偏差で算出する。  ・科ごとの差異を比較し、正確な分析に役立てる。 6. 分析結果の活用  ・傾向の把握:得られたデータから受診動向の傾向を明確にする。  ・対策の検討:把握した傾向を元に、より良い医療サービスを提供するための対策を議論する。  ・情報共有:分析結果や検討内容を関係部署で共有する。 7. 行動の継続と改善  ・定期的な分析:定期的な受診動向の確認により、新たな傾向や変化を捉える。  ・行動計画の見直し:状況の変化に合わせ、計画を適宜更新する。 各ステップを着実に実行することで、学んだ分析手法を実務に効果的に活かしていきたいと考えています。

戦略思考入門

業務改善への学びを深める新たな視点

複雑性の原因は? 現在、私の所属する会社では、複数の事業が並立し、複雑化しています。この状況を「範囲の不経済」として再認識する機会となりました。新規事業を立ち上げるにあたって、社内資源を最大限に活用しようと心掛けていましたが、それがかえって事業の複雑性を増す原因になっていたように感じます。今後は、「既存ビジネスとの資源の共通部分が本当に強みを生むのか」を再度考える必要があると感じています。 業務思考の向上は? 総合演習を通じて、普段の業務に当てはめて考えることのできる観点を学びましたが、実際には業務中に立ち止まって考える余裕が足りませんでした。今後は、自分自身で立ち止まり、思考を深めるべきポイントを明確にすることから始めたいと思います。また、演習時に思い付きで意見を列挙した場合と、フレームワークを活用して検討した場合とでは、回答の整理や網羅性に大きな違いがありました。この違いは業務にも大きく影響するため、情報の整理や思考を深めることを習慣化したいと考えています。 部門調整はどう? また、現在は事業が多様化しており、範囲の不経済が生じている状況です。業務においては、本部間の調整や組織の運営に対処する必要があります。これに対し、まずは個々の本部の意向を一旦脇に置き、会社全体のあるべき姿を客観的に見据えて、他部門との対話や調整を進めていきたいと思います。 ターゲット明確化は? 演習を通じて、ターゲットの明確化が不可欠であることを改めて認識しました。現在、事業全体で共通のターゲット像が描けていないことが課題です。これまでこの問題に対して提言できずにいましたが、学習によって外部環境や内部環境の整理が不足していたことが原因であると理解しました。今後は、行動計画に従って具体的な対策を講じたいと思います。 資源活用を見直す? まず、自部門に限らず他部門も含めたバリューチェーン分析やVRIO分析を行い、会社全体の構造と資源を再評価したいと考えています。これまでの「自社資源を何が何でも活用する」という考えを見直し、共通の資源が本当に強みとなるかを検討することで、真にシナジーが期待できる部分のみを利用するようにして、経済的な効果を生み出す状態を目指します. 議論で成長できる? 加えて、3C分析やSWOT分析を用いて一切の漏れがないよう情報を整理し、ターゲットをどこに設定すべきか、自分の言葉で繰り返し言語化していきます。この学び全体を通じて、言語化の重要性とそれに伴う能力の鍛錬が必要であることに気づきました。したがって、今後のアウトプットについては、必ず上司や同僚と議論し、終わりではなく改善を繰り返す姿勢で取り組んでいきたいと思っています。

アカウンティング入門

数字が映す企業戦略の秘密

企業戦略は何が鍵? 今週の学習で印象に残ったのは、企業のビジネスモデルや戦略がP/LやB/Sといった財務諸表に如実に表れるという点です。これまで財務諸表は経理や専門職が扱うものと考えていましたが、複数社の比較を通じ、数字が企業の意思決定や事業構造を映し出す鏡の役割を果たしていることに気づかされました。 軽やかな利益構造は? たとえば、ある企業はシステム提供型のスケーラブルなビジネスを展開し、インフラや開発費に重きを置いた軽やかなコスト構造を持つため、売上原価比率が低く抑えられています。一方、別の企業は自社でコンテンツを制作・調達することで競争優位を築いており、その結果、売上原価の比率が高く、P/Lから企業が何に価値を置いているかが読み取れました。 資産構成はどう映る? また、B/Sの観点から資産構成を比較すると、ある企業は高額な有形固定資産を多く保有し、長期安定運航を支える重厚な資産構成であるのに対し、別の企業は現金・在庫・システム関連など流動性の高い資産が中心で、柔軟な運営体制を実現していることが数字に表れていました。 数字は何を語る? このように、数字を通して「企業の戦い方」や「どこに強みを置いているか」を読み解ける点は、今までにない気づきでした。アカウンティングがビジネスの理解に直結する力を持つことを実感できた1週間でした。 業務改善の視点は? さらに、B/Sからビジネス構造や戦略を読み取る視点は、社内業務の棚卸しや改善提案の場面で大いに活用できると感じています。従来、請求や検収、支払などの処理業務の改善優先度は、作業量や負荷感といった感覚的な基準で検討していましたが、今後は資産の流動性・固定性に着目することで、業務が財務面に与える影響や重要性をより定量的に把握できると考えています。 改善提案はどう進む? 実際、月次業務の改善会議では、部門ごとに資産の動きや処理負担を整理し、改善優先度を明確に提案する機会が増えると予想しています。また、経理AIサービスの開発支援に携わる中で、各業種の資産構成に応じたレポートやアラート設計を、財務的視点から企画チームに提案するシーンも想定しています。 具体策で未来を問う? そのための具体的アクションとしては、まず自社の主要業務に関わる資産・負債の構造を部門ごとに可視化するマッピング資料を作成します。そして、現場担当者との対話を重ねながら、「この業務がどの財務項目と関係しているか」「流動性の高い資産を扱う業務はどこか」といった視点を共有し、B/Sの構造を共通の改善指標として浸透させていきたいと考えています。

デザイン思考入門

受講生の声が導く解決のヒント

本質の学びは何? 今週の学びのポイントは、①問題の本質をとらえる、②洞察の整理と可視化、③顧客課題仮説の作成、④ユーザー中心の視点の維持、⑤検証と改善の5点でした。特に③顧客課題仮説の作成は、何となく感じていた課題を「●●は●●という状況で、●●という課題を抱えており、●●という解決策を提供できるのではないか」という形に整理することで、その課題が真に本質的なものかどうか、またその根底にある意図に気づく大きなヒントとなりました。 受講生の視点はどう? 先日、担当しているビジネススクールで、受講生から「自習時に周囲が気になって集中できない」という課題が相談されました。当初は「耳栓を使用してみてはどうか」といった提案をしましたが、今回の学びを踏まえ、これを改めて課題仮説に当てはめてみることにしました。その結果、「受講生は教室で自習する際、周囲が気になって勉強に集中できないという課題を抱えており、簡易パーテーションを設置するという解決策を提供できるのではないか」という形に整理でき、受講生の立場に立った新たな視点に気づかされました。 環境改善の鍵は何? これまで「周りが気になる」という相談に対しては、うるさい受講生への注意や配慮を促す張り紙の掲示など、ソフトな対応を中心にしてきました。しかし、受講生の目線で考えると、簡易パーテーションのような物理的な解決策があれば、より快適な環境が整うことに繋がると感じられたのです。もちろん、実際にそのような取り組みを行うには費用面などのハードルがあるものの、その障壁があったためにこれまで検討の対象になってこなかったと改めて認識しました。 ユーザーの隠れたニーズは? また、今回の学びでは、観察やインタビューを通じて得たユーザーの気づいていないニーズ(暗黙知)や認識しているニーズ(形式知)をもとに、本当に解決すべき課題を定義する重要性を学びました。文字情報の分析や定性分析、コーディング、さらにはKJ法や付箋紙法といった手法を通じて、受講生への共感から本質的な課題を抽出するプロセスが理解できました。初心者は、まず観察から得たメモの中からポイントを抽出することから始めるとよいとのことです。 解決策検討の視点はどこ? 今日の学びとしては、ユーザーの声を素直に受け止め、様々な角度からソリューションを検討する姿勢がいかに重要かを実感しました。ユーザーの話を聞く段階では十分な理解が得られても、実際に解決策を検討する際には、初めから制約にとらわれて選択肢が狭まってしまいがちです。そこで、課題文として整理するステップを設けることは、広い視野を保つ上で意義深いと感じました。

データ・アナリティクス入門

驚愕!データが暴く工芸品の現実

分析の続きは? 今回の振り返りでは、ライブ授業で行った分析の続きを実施し、8月の売上が大幅に落ちた原因を探りました。分析の目的は、売上減少の背景にある要因を明確にし、回復策を検討することでした。特に、4000円パッケージの工芸品が大人層やシニア層に十分に支持されなかった可能性に着目しました。 利用状況を探る? シニア利用者数(3パッケージ合計)は前年比で38%減少しており、大人の4000円パッケージ利用者は71%減少、一方で大人の6000円利用者は88%増加しています。これにより、大人層では4000円パッケージから6000円へのシフトが見られるのに対し、シニア層はどちらのパッケージも大幅に減少していることが明らかになりました。 アンケート結果は? アンケート結果からは、8月に工芸品が「気に入らなかった」と回答した人が45%に上り、7月以前の22%から大幅な増加が確認されました。また、「とても気に入った」と答えた人が73%減少しているため、工芸品への評価が売上減少の主要な要因であると結論づけられます。一方で、工芸品が気に入らなかったにもかかわらずパッケージを利用した利用者が45%存在することから、観光客としての「せっかく来たから何か作る」という心理を活かす改善策も検討に値すると考えられます。たとえば、現地の歴史に由来するデザインを採用して希少性や特別感を演出する方法が挙げられます。 パッケージの見直しは? 結論として、4000円および6000円のパッケージにおいては、大人向けの要素を維持しつつ、旅行の特別感を強調するデザインの見直しが必要であると考えます。 演習で気付いた点は? 今回、改めて当日の演習問題に取り組む中で、工芸品が気に入らなかったにもかかわらずパッケージを利用した利用者が45%もいたことに驚かされました。ライブ授業の際には気付かなかった点であり、データを通して自分では想定しなかった結果が得られる可能性を再認識しました。今後は、盲目的な結論に陥らず、広い視点から網羅的に仮説を立てることが重要だと感じています。また、今回の分析では「売上減少の原因究明とサービス改善」を主眼に置いたため、その目的から逸れないように注意することも大切だと実感しました。 年金負担の影響は? さらに、大人の利用者は4000円パッケージから6000円パッケージへのシフトが起きた一方で、シニア層は利用自体を減らしていることが明白です。物価上昇による年金生活者への負担が影響している可能性も考えられますが、ほかにどのような要因が考えられるか、皆さんのご意見を伺いたいと思います。
AIコーチング導線バナー

「検討 × 改善」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right