データ・アナリティクス入門

仮説とデータで見える成功術

A/Bテストの条件は? A/Bテストを行う際には、条件を揃えることや分析対象を明確にすること、そして仮説に基づいた比較検証のポイントを絞ることの重要性を確認できました。また、課題解決に向けた顧客心理に着目したテキストや、ユーザーが行動しやすい要素が重要であると実感しました。 ファネル分析の重要性は? 日々のウェブマーケティング業務において、今回の課題事例から多方面で役立つ考え方を学ぶことができました。特にファネル分析は不可欠であり、全体のマーケティング戦略を踏まえた上で確実に設定し、日々の分析に活用していきたいと感じています。 新たな仮説はどう導く? 今後は、売り上げ向上を目指すサイト改善や広告のA/Bテストにこれらの知見を活かしていくとともに、単一のデータに頼るのではなく、関連する複数のデータを俯瞰的に捉え、そこから新たな仮説を導き出す取り組みを深めていきたいと思います。

クリティカルシンキング入門

心に響く!視覚で磨く伝える力

効果的な視覚情報の秘訣は? 情報を伝える上で、視覚的な情報の作り方が非常に重要であると改めて感じました。伝え方は環境や状況によって異なるため、目的に応じた最適な見せ方を選べるよう、視覚情報の表現方法の幅を広げる必要があります。 自分の視点で見る資料は? 普段目にする資料は、「自分ならどのように作るか」という視点で観察するよう心がけています。また、文章作成時には、アイキャッチの活用、文章の硬軟のバランス、そして読みやすい体裁の3点を常に意識し、読み手の立場に立って内容を確認する習慣を続けています。 プレゼン成功の秘策は? さらに、8月22日に他部署の行動変化を促すためのプレゼンテーションを実施する予定です。資料全体の構成や使用するデータの選定において、目的と対象に合わせた最適な見せ方を意識し、作成内容が理解促進に効果的かどうかを事前に第三者の意見を取り入れて確認する予定です。

データ・アナリティクス入門

比較で解く原因の奥義

原因をどのように特定? 問題の原因を特定するためには、まずプロセスに分解し、そのプロセスごとに原因であるという仮説を立て検証する必要があると学びました。特に、条件を同じにして比較対象の要素をひとつだけ変更するA/Bテストの手法は、原因検証に非常に有効であると理解しました。この「分析とは比較である」という本学習の原則は、派生していっても常にその根本に忠実でなければならないと感じました。 多角的な検証の鍵は? また、問題の原因を直感で捉えるのではなく、What、Where、Why、Howの4つのステップで明確に切り分けることで、決め打ちにせず多角的な検討が可能になると実感しました。これにより、他者への仮説説明もしやすくなると同時に、A/Bテストを実施する際にもどの要素を置き換えるかを明確にしてトライアンドエラーのプロセスを進めることができ、より納得のいく検証が行えると感じました。

データ・アナリティクス入門

比較で見える戦略策定の極意

データ分析の重要性を再確認 「分析は比較」という考え方は、実務において非常に重要であると実感しています。単にデータを集計するだけでは、判断材料とはなりません。そのため、比較や判断が可能な形での分析を常に心掛けています。今回の講義でも、この視点の重要性を再確認しました。 数値比較で客観性を持たせるには? 事業戦略を策定する際には、過去の実績などの比較数値を用いることで、客観的な判断が可能になります。また、「Apple to Apple」の話が示すように、比較する対象を明確にし、条件が一定であることを確保することで、適切な結論を導き出せると考えます。 チームで共有すべき比較意識 さらに、戦略書やプレゼン資料を作成する場合、目的をもって適切な比較対象を用いることで、説得力を高めることが重要です。チームメンバーにもこの意識を共有し、齟齬なく業務を進められるよう努めています。

データ・アナリティクス入門

平均だけじゃ見えない世界

平均値だけで判断? 平均値だけを見ると誤った判断をする危険性があると学びました。そこで、データの分布を詳しく分析することでばらつきを把握し、分析対象の値についていくつかの代表値を意識することで、より確かな分析が可能になると実感しました。 各地域で違いは? また、これまで地域ごとに単純なヒストグラムグラフを用いて施策の導入率を示していたところ、異なるビジュアルで各地域の分布を可視化する手法が有効であると感じました。これにより、データの違いから仮説や対策を導き出すことができ、より実践的な分析が行えると考えています。 再考してどう変える? 今後は、常に分析の方法やデータの捉え方を再考する習慣をつけ、複数の視点からデータを加工・表示する手法を試みたいと思います。また、比較を意識しながらギャップの要因を探り、そこから具体的な対策を検討していく姿勢を大切にしていきます。

データ・アナリティクス入門

比較で見つける学びのヒント

比較はなぜ大切? 分析において、比較が本質であることを再認識しました。何かと比較することで評価が可能になり、比較しなければ正確な評価は得られないと実感しました。 同条件比較って? また、評価の際には同一条件、すなわち「Apple to Apple」の比較を意識する重要性も感じました。分析の第一歩は仮説の立案から始まり、その仮説を検証するために、何と何を比較すべきかを明確にする点が印象的でした。 業務分析の極意は? 日々の業務では、自分自身のデータ分析はもちろん、他のメンバーや関係者が行った分析も、このプログラムで学んだ体系化された論点を用いて見極め、改善点を具体的に指摘できるよう努めたいと思います。 爆撃機から学ぶ? さらに、学習事例として紹介された爆撃機の事例は、一見とらえにくい対象にどのように着目し、考察を展開するかについて大変興味深く感じました。

クリティカルシンキング入門

考えを伝える魔法のレシピ

伝え方ってどうすべき? ビジネスの現場で、伝えたいことが伝わりにくい理由について理解が深まりました。単にコミュニケーション能力の差ではなく、考えをどのように伝えるかというスキルの有無が大きく影響していると感じます。今回、その考え方を学べたことで、口頭でも文章でも「何を伝えたいのか」という目的を明確にし、論理的な順序で考えをまとめる重要性を再認識しました。 部署で情報伝達は? また、多くのメンバーが所属する部署において、情報を正確に、共通認識として伝えるための工夫が必要だと実感しています。メールを作成する際には、日本語が正しく使われているか、また順序立てた手順で文面が組み立てられているかをセルフチェックし、場合によっては対象者にも確認してもらっています。会議や面談の前には、目的と考えを明確にするために、ロジックツリーなどを活用し、思考の偏りが生じないよう努めています。

データ・アナリティクス入門

比較が切り拓く使いこなしの未来

比較って何が重要? 分析というと、難しい数字を使った調査と思われがちですが、本質は「比較」であると学びました。比較は、目の前にあるもの同士だけでなく、目的に応じて見えていない要素も想像して行う場合があります。 活用状況はどうする? プロダクトにおける顧客の活用状況では、十分に使いこなせていないケースの課題を抽出し、もししっかり活用できた場合のシミュレーションを定量的な数値で示すことが重要です。こうして、利用促進のきっかけを提供すると同時に、プロダクト自体の改善点にも繋げられると実感しました。 目的はどう定める? また、比較対象を決める際には、分析の目的と照らし合わせながら選定することの大切さを学びました。私自身、問題が発生した時に手段に頼りがちな傾向がありますが、今後は目的を明確に定義し、しっかりと把握する意識を一層高めていきたいと思います。

データ・アナリティクス入門

ステップで変わる!問題解決力の磨き方

ステップを踏んで考える重要性 分析する際には、大きな点だけに焦点を当てず、ステップを踏んで考えることが重要です。ロジックツリーを活用することで、大きな問題を細分化して俯瞰できます。この手法により、自分だけでなく他の人も問題点を理解しやすくなり、様々な角度から物事を捉えられるようになるでしょう。 「なぜ」にとらわれない方法とは? 「なぜ」に注目しがちですが、大きな問題を細分化して捉えることで、複数の解決策を見つけることが可能です。ビッグデータの中から、どの数字を分析対象にするかを目的から逆算して決定することが必要です。 ビッグデータ分析の始め方 まずは、ビッグデータを理解しましょう。そこから目的を定め、分析すべき数字を選びます。ロジックツリーを利用して異なる方向からのアプローチも試みると、違う視点から全体を見渡し、新たな発見が得られるかもしれません。

データ・アナリティクス入門

どのデータを集めるかが未来を決める

比較の重要性を再考する 分析の本質は比較であることを学びました。これまで、比較対象の選定や要素の統一が不十分だったため、正確な分析ができていなかったと感じます。特に、生存者バイアスがかかってしまうことが多かったことを反省しています。 実証実験で得る結果は? 新規事業を創出する部門に所属しているため、秋から行う実証実験ではデータの適切な分析と比較対象の正確な選定を心掛け、意味のある結果を得たいと考えています。また、取得したいデータの設計も行い、目的に合った実証実験を行いたいと思います。 適切なデータ設計とは? 実証実験の目的を再確認し、成功と見なされるために必要な情報を考えます。どのようなデータを取得すればよいかを設計し、それを企画に反映させます。分析の本質は比較にあることを常に念頭に置き、適切な比較対象を設定することを意識して進めていきたいです。

データ・アナリティクス入門

数値で見抜く!漏れゼロの採用戦略

どの段階で離脱? ファネル分析を通して、どの段階で対象が離脱しているかを可視化できるため、問題点を明確に捉えることができると感じました。ただ単に結果を眺めるのではなく、途中段階で状況を確認し、各プロセスを適切に設定することが重要だと思います。 採用選定のポイントは? また、採用活動においては、採用エージェントや採用プラットフォームの選定に活用できる点が印象的でした。まず、人材会社のユーザー数、直近3カ月以内のアクティブ数、採用職種の登録人数、採用希望年代など、段階的に絞り込むことで、対象となる母数の大きさを把握する手法が有効だと感じました。 母数比較で選定は? さらに、それぞれの採用エージェントやプラットフォームを運営する企業ごとに同様の絞り込みを行い、母数を比較することで、採用活動に最も適した人材会社を選択できると実感しました。

データ・アナリティクス入門

比較が切り拓く説得力

何を比較する? 「分析の本質は比較である」という考え方を基に、分析を行う際には何を比較の対象とするのかを明確にすることが大切だと感じました。また、比較対象が適切かどうか、つまり条件ができるだけ揃っているかを検討することで、説明する相手にも説得力を持って納得してもらえると考えました。 数値変動の理由は? 商品の活用数値に大幅な変動があった際は、原因分析が必要です。その際、単に昨年度同時期の数値を比較するだけでなく、同期間の環境―追い風か向かい風か―を把握することで、より説得力のある分析が可能になると思います。これらの情報がすぐに確認できるよう、ファクト元の整備も重要だと感じました。 業務経験をどう活かす? 特に疑問点はありませんでした。今後は、皆さんの業務経験を参考にしながら、さらに多角的な観点で分析を深めていければと思います。

「対象」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right