データ・アナリティクス入門

データで見える未来の仕事術

平均値を使う意味は? 平均値を中心に使っていたものの、実はその名称や意味を十分に理解できていなかったことに気付きました。加重平均や幾何平均も実は使ってはいたのですが、今回の学びで、自分の仕事の中で具体的にどう応用できるかをイメージすることができました。 散らばりはどう捉える? また、散らばりや標準偏差といった指標を通じて、データ比較のためにさまざまな基準があることが理解でき、非常に興味深かったです。普段はあまり使っていなかったヒストグラムも、実際に活用することで、案件のサイズがどこに集中しているかが一目で分かり、次の一手を考えるためのヒントになりそうです。 どの平均を選ぶ? さらに、加重平均は現状のデータ分析に役立ち、幾何平均は来年度の数字を検討する際に採用できそうだと感じています。標準偏差の活用法については、これから意識しながら幅広い視点で考えていく予定です。 実践で数字はどう変わる? 明日には、過去のデータをもとに加重平均、ヒストグラム、幾何平均の活用を実践し、特に幾何平均については過去数年分のデータを基に来年度の数字の妥当性を検証してみたいと思います。これまで漠然と感覚で判断していた数字が、しっかりとした目安となると確信しています。

データ・アナリティクス入門

データをビジュアル化して誤認を防ぐ方法とは

前提を間違えずに検証するには? 平均年齢30才という言葉から、勝手に30才前後が多いと解釈してしまいました。仮説を立てて検証する際にも、前提を間違えると意味がないことを実感しました。データをビジュアル化することで、事実を正しく把握しやすくなり、様々な視点を得られることが体感できました。この誤認しやすい傾向を忘れず、丁寧に事実を把握することを意識したいと思います。自分の単純に判断しやすい癖を改めて感じました。 予測はどのように立てるべき? グラフを作成する前に予測を立ててみることも重要です。事前に予測することで、想定と現実とのギャップを見つけやすくなり、課題箇所を把握しやすくなります。また、作業手順に意識を向け、グラフ作成時には特徴的な箇所を意識することも大事です。今まであまり意識してこなかった手順を意識し、ステップを可視化して実施することに努めたいと思います。 ビジュアル化がもたらす効果は? 仮説検証は、正確な事実把握ができて初めて成り立つため、まずは身近な課題や過去の課題から事実把握のビジュアル化を実践し、確認していくことが大切です。正しい事実把握の習慣化を努め、課題を把握しやすいデータ加工とビジュアル化を念頭に作業を意識的に進めていきます。

データ・アナリティクス入門

ロジックツリーで見えた解決の道筋

問題解決の第一歩は? 優先度や重要度が高い問題を選び、結果から要因を抑えることが重要です。以下のプロセスに沿って進めます。 まず、現状把握です。直面している課題や状況を明確にします。次に、原因の特定を行い、問題箇所を絞り込み、その原因を分析します。最後に、原因に対する有効な解決策を考えます。 多様な視点を持つ意義とは? この一連の流れをスムーズに行うためには、もれなくダブりなく、意味のある分け方が必要です。そのためには、多様な視点や切り口を持つことが重要です。 経験に頼る危険性は? 長い間仕事をしていると、経験や勘に頼りがちですが、ここでは必ずしもそれが最善策とは限りません。プロセスを再確認し、思い込みを排除するために要素を分解し、状態を把握して、問題を多く出すことが求められます。 ロジックツリーの活用法は? そのために、ロジックツリーを使用する機会を増やしていくことが有効です。実際の職場で何が起きているのかを確認するためには、課題をロジックツリーを用いて整理し、自分が把握できていない部分を確認することが重要です。 問題の優先順位をどうつける? その上で、優先度や重要度が高い問題を明確にして対策を立てることが必要になります。

クリティカルシンキング入門

データの本質を引き出す視点の磨き方

データの解像度を上げるには? 目の前にあるデータを単に見るだけでなく、それを加工し、グラフなどで視覚化し、さまざまな切り口で分解することで、データの本質的な意味を理解することができると感じました。このように解像度を上げることで、データが持つ真の価値を引き出すことができます。ただし、自分にとって都合のいい結論に導くためだけに分解して終わらせず、他の切り口がないか、結果に漏れや重複がないかを常に疑う姿勢を持つことが重要です。 事業計画に活かすデータ分析 こうしたアプローチは、事業計画や月次報告などで数字を扱う際に特に効果的だと考えます。数字をただそのまま見るのではなく、複数の視点で分解することによってデータを正確に捉えることができ、その結果、本当の問題やボトルネックが浮き彫りになり、効果的な対策を講じることが可能になるでしょう。 新たな分析視点をどう加える? 事業計画の策定や月次報告の際には、以下の点を意識して取り組みたいと考えています。まず、数字を羅列するのではなく、視覚化して表現することで新たな気づきを得る。そして、これまでに使ったことのない新たな切り口を加えることにより、テンプレートにはない分析を行い、さらなる洞察を得ることを目指します。

データ・アナリティクス入門

問題解決力を磨くための新たな視点

問題解決で大切な視点は? 問題解決のプロセスにおいて、重要なのは「あるべき姿」と「現状」のギャップを意識し、その上で優先度や重要度に基づいて取り組むか否かを選択することです。このステップは一方通行ではなく、行き来することもあります。定量的な評価を行う際は、単に数値の変化に注目するだけでなく、現場で何が実際に起きているのかを確認することも大切です。また、人に説明する際にはビジュアル化が有用です。 課題設定でのポイントは? 問題解決の際には、課題の設定で「あるべき姿」が明確にされているかを確認します。実務に取り組みながら、今行っている作業が問題解決のどのステップに当たるのかを常に意識することが求められます。定量情報に偏ることなく、現場の状況や定性情報も取り入れ、適切な切り口や仮説を設定します。 分析計画で留意すべきは? 分析に先立って行う分析計画表には、「あるべき姿」とそのギャップ、各問題解決ステップにおける具体的な作業を記載します。多面的なデータ分析を行い、状況に応じて計画の修正を柔軟に行うことが求められます。また、MECE(漏れなく重複なく)にあまりにもこだわるよりは、意味のある切り口や仮説を意識しながらデータに向き合うことが重要です。

クリティカルシンキング入門

営業成績向上のカギはデータ分析!

--- 分析の重要性をどう捉える? 分かるということは、分けることです。ひとつの観点だけでなく、全体をざっくり分けてから更に分解していくことの大切さを学びました。例えば、単に率や平均の傾向が見えたとしても、他の視点から考慮する必要があります。これまで、分析の必要性や意味に疑問を抱き、実行をためらうことがありましたが、たとえ数字が出なくても、失敗したとしても、それ自体に価値があるという考え方を知ることができました。 リソース配分の最適化は可能? 営業所全体の新規顧客と既存顧客の比率と目標達成率を比較し、自身の数値と照らし合わせることで、異なる点を検討し、業績向上に繋げていきます。また、受注、失注、継続の際にどんな癖やパターンがあるかを分析し、既存と新規にどの程度リソースを割り当てる必要があるかを判断します。 振り返りを活かすには? 毎週の振り返り時には、他者と自身の数値を比較し、次週の行動指針を設定します。定量的に分析する習慣を身につけることで、説得力のあるトークができるようになることを目指しています。さらに、自身の営業活動において、どの局面で受注できているか、失注しているかを再確認し、改善点を見つけていきます。 ---

アカウンティング入門

数字が示す経営判断のヒント

財務への洞察は? これまで財務諸表の作成業務に携わってきたため、今回の内容自体に新たな発見はあまりありませんでした。しかし、「財務諸表を利用して経営判断を行う」という視点の重要性を改めて実感する機会となりました。これからは、数字が示す意味をより深く理解し、その知見を経営に活かしていく姿勢を大切にしていきたいと感じています。財務情報を単なる報告書類ではなく、経営の意思決定を支える貴重なツールとして活用することが、自己の成長に直結していると実感しました。 説明をどう伝える? また、今後の取り組みとしては、まず全社ミーティングにおいて財務状況を社員に丁寧に説明する場面で、数字の意味や背景をわかりやすく伝えていくことに注力します。さらに、B/SやP/Lの数字が何を表しているのか、会計に直接関わらない社員にも理解できるよう工夫を重ね、説明の質を向上させることを目指します。 数字の意味を考える? 最後に、自分自身が財務指標を読む際には、常に「この数字は現場や社員にとってどのような意味を持つのか」を考える習慣を身につけるよう努めます。社内ミーティングの前には、視覚的に理解しやすい簡単なスライドや図解を作成するなど、工夫を凝らしていく所存です。

リーダーシップ・キャリアビジョン入門

エンパワメントで広がる仕事の余裕

エンパワメントの意味は? エンパワメントという言葉を初めて知りました。自分に余裕を持つことは非常に難しいですが、日頃から意識的に余裕を保って行動しているため、今回の内容には納得できる部分がありました。一方、目標設定においては6W1Hの観点を踏まえると形式的になりがちですが、相手に合わせて柔軟に対応することが重要だと感じました。 どのように任せる? エンパワメントの実践にあたっては、まず業務を任せる前に、対象者の状況や周囲の環境について十分に把握することが大切だと考えました。その上で、どのようにエンパワメントを進めるか自分なりに計画し、メンバーにもその計画に基づいて動いてもらう形が理想です。現在の業務でも、知識や経験に差があるメンバー同士で助け合いながら進めることで、一人では難しい課題もチームとして解決し、その学びを個々に活かせるよう努めています。 目標連動のコツは? また、経営層から示される目標を部や課単位でさらに細分化すると、全員の目標が一致するとは限りません。自分は、まずメンバーの視点で目標を考え、その上で課の目標にどのように連動させるかを検討する方法を半分ほど取り入れています。皆さんの実践されている方法もぜひ伺いたいです。

データ・アナリティクス入門

データ分析の新たな視点を発見!

データ分析に必要なスタート地点は? データ分析とは何かと問われたとき、私は即答できない自分に気づきました。しかし、week1で「分析とは比較である」という言葉に出会い、新たにスタート地点を明確にすることができました。これからは、自分が行おうとしている分析が「比較」になっているかどうか、自問自答できるようになりました。さらに、分析を行う目的をしっかりと確認し、自分が伝えたいことに合致した比較ができているかを常に問い続けることを忘れないようにしたいです。 結果的な「比較」に満足していませんか? よくある例として、言われたままにデータを出すことが多かったのですが、特に期末には前期比や前年比を提示するだけで終わっていました。しかし、何を「比較」すればより実態や現状を明確に伝えることができるのかを考えるアイデアが必要だと感じています。 新しい発見へとつながる比較は? たくさんのデータがある中で、売り上げの数字以外にも何か意味のある比較対象を見つけたいと思います。売り上げや数量、売り上げの多い顧客などは一般的な比較対象ですが、それ以外にどのような視点で比較すれば新しい発見につながるのか、色々な分析データを見ながら探していくつもりです。

アカウンティング入門

アカウンティングで広がる新たな視点

アカウンティングの理解を深めるには? アカウンティングの重要性や、事業活動の意味、事業活動を定量化する指標について、今まで漠然と理解していたことがしっかりと言語化され、体系的に整理されました。これにより、頭の中にフレームが形成され、とてもすっきりとした気持ちです。このフレームに情報や知識を加え、自分の中で考えを整理していくのが非常に楽しみです。 自社のP/LとB/Sをどう活用する? まず、自社のP/LとB/Sを読み解けるようになり、俯瞰的な視点で自部署や他部署の事業活動を再考したいと考えています。その後、競合他社のP/LやB/Sを分析し、自社と比較することで、改善や成長のポイントを見つけたいです。 理解を深めるためのアプローチは? 本講座を通じて、すべての内容をしっかりと理解し、疑問点がない状態で修了したいと考えています。その上で、自社のデータを読み解く際に生じる不明点については、上司に相談したり、質問の機会を作りつつ理解を深めたいと思います。競合他社の分析に関しては、特定の企業をピックアップし、理解を深めたいです。また、アカウンティングに詳しい周りの方々に声をかけ、比較検討会の実施を提案したいと考えています。

クリティカルシンキング入門

イシューで未来を変える

イシューの意味は何? イシューとは、問いかけの形で具体的に定義し、ずっと念頭に置くべきものだと感じました。考えたい内容や既に知っている情報に流されがちですが、今ここで提示すべき問い=イシューをしっかり握り続けることが、他のどの技術よりも難しくもあり、重要であると実感しています。 どう活かすべき? この考えは、人事考課における目標設定や振り返り、プロジェクトの進め方に関するブレーンストーミング、障害発生後の振り返り会議、各種相談のシーンなど、さまざまな場面で活用できると感じました。単純な回答では済まないやりとりにおいても、イシューを軸に進めるアプローチは有効だと思います。 振り返りの確認は? また、以下の点を意識するとよいと考えます。つい空白を埋めようと衝動に駆られることが多いため、まずは目的やイシューを検討・特定(まずは一旦黙る)すること。そのイシューが適切かどうか、ほかの視点がないか、他者にアドバイスを求めること。議論が流れに任せて進みそうになったり、本筋から逸れていると感じた時には、自ら方向修正を試みること。さらに、議論ややりとりの後に、初めに設定した問いをしっかり握り続けていたかを振り返ることも重要です。

クリティカルシンキング入門

データの分析で新たな視点を発見!

どうデータを見やすくする? データの視覚化と多角的な分析の重要性に気づきました。まずは実数を表にまとめることから始めますが、棒グラフや円グラフといった視覚的に理解しやすい形式でまとめることが効果的です。さらに、データの合計や比率を算出し、実際に手を動かして分析を進めることが大切だと感じました。 MECEで全体を整理? MECEとは「もれなく、ダブりなく」要素を分けることを意味します。これを行うためには、集合、変数、プロセスといったアプローチで全体を分けることができます。MECEを活用する際には、まず「全体」を正確に定義することが重要だと学びました。 本当にそうなのか? 研修アンケートの分析や問題解決方法の提案などの課題に対して、これまでの成功体験に偏らず、「本当にそうなのか?」と疑う姿勢を持ちたいと思います。異なる視点でデータを捉え、グラフ化や比率計算を行いながら、具体的な手を動かして分析を深化させたいです。 分解はどう進める? また、要素を分解する際には、MECEの分け方を意識して「漏れなく、ダブりなく」分けることを心がけ、まずは全体を明確に定義することから始めたいと考えています。

「視点 × 意味」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right