データ・アナリティクス入門

データから見る解決のヒント

問題解決ってどうする? 問題解決の手順を踏む中で、まずは「what(問題の明確化)」「where(問題箇所の特定)」「why(原因の分析)」「how(解決策の立案)」のステップを順に進めることが重要だと再認識しました。原因の仮説を立てるためにはデータ収集が不可欠で、仮説は単に立てるだけでなく、フレームワークを活用して幅広い視点から検討することで有用性が広がると感じました。その際、決め打ちせずにまずは自由に思考を発散させることも大切です。 数字から見える真実は? また、現時点では具体的な数字は得られていないものの、例えば事務処理に関しては実際の受付件数、処理件数、処理できなかった件数、人員数などのデータをまず取得し、そこから何が見えてくるかを仮説として立ててみたいと考えています。ただ「件数が増えているから忙しい、人手不足が原因だ」という決め付けに陥らず、複数の視点で状況を検討する必要性を感じています。 具体的な例には触れませんが、まずは上記のデータを確実に収集することが先決です。その上で、今回の問題解決のステップに沿って、場合によってはフレームワークの活用も検討しつつ、少なくとも複数の仮説を提示できるようにしたいと思います。

データ・アナリティクス入門

仮説が拓く学びの扉

仮説の基本って何? 仮説とは、論点や不明点に対する仮の答えを示すものであり、結論の仮説はある論点に対する仮の答え、問題解決の仮説は具体的な問題を解決するための仮の答えとなります。これらは時間軸に沿って中身が変化する点に注意が必要です。 複数仮説は必要? また、仮説は複数立てるべきものであり、決め打ちするのではなく、異なる切り口から幅広く考えることが求められます。仮説同士には網羅性を持たせ、あらゆる視点からの検討を行うことが大切です。 どの指標を選ぶ? 比較するためには、何を比較の指標とするかを意識的に選びながらデータを収集することが必要です。具体的な比較対象を定めることで、より精度の高い検証が可能になります。 仮説で解決できる? また、問題解決の場面では仮説が重要な役割を果たします。例えば、ある商品の売上が伸び悩んでいる場合、新規顧客獲得のためのさまざまな仮説を元に幅広いデータを収集し、その中から最適な答えを探し出すといった方法が考えられます。 なぜ仮説が求められる? 仮説が求められる場面とは、論点や問題が複雑で一律の答えを出しにくい場合や、現状の状況を打破するために新たな視点が必要な時と言えるでしょう。

マーケティング入門

固定概念を打破!新たな挑戦

製品の価値は何だろう? 製品価値を最大化するためには、単に製品に付加価値を加えるのではなく、その価値がどのような顧客に響くのかをしっかり把握することが重要であると学びました。市場の挑戦や自社が目指すポジショニングについて、製品開発時点のコンセプトや従来の顧客層という固定観念にとらわれず、製品の特長を純粋に洗い出して再検討することで、新たな機会を創出できる可能性があります。 リポジションの壁は何? 一方で、私の所属する業界では、製品が特定の顧客層に使用されることが前提となっているため、簡単にリポジショニングを行うことは困難です。しかし、顧客層をさらに細分化し、活動領域を限定して製品展開を行うケースが多いことから、各製品の価値を改めて見直し、従来は優先順位が低かった顧客層にもマッチする提案ができないか再考することで、新たな機会につながるのではないかと考えています。 固定概念はどう捉える? また、既存製品については、製品プロジェクトのマネージャーがこれまでの経験から固定概念を持っている可能性があると感じています。私自身は、第三者的な視点で冷静に製品の価値を分析し、新たな顧客創出のヒントとなるポイントを見出したいと考えています。

クリティカルシンキング入門

伝わる!シンプル資料の作り方

伝えたいことって何? キーメッセージを明確にし、伝えたい内容に沿って情報の順序やグラフの種類を選ぶことが重要であると学びました。相手に意図を的確に伝えるためには、単に言葉を練り直すだけでなく、どの情報をどのように表示すれば理解しやすいかを考える必要があると感じています。 新規販促ってどうかな? 今後は、新規顧客拡大に向けた販促手法の整理に取り組みます。上長のみならず、関連部門の担当者と共有する資料作成や、WEBページ改修、さらにはデザインやコーディングを依頼する際にも、明確な方向性を示す手段として活用していくつもりです。 視覚資料の威力は? また、メッセージを迅速かつ正確に伝えるために、図やアイコン、写真、表やグラフなど、視覚的に情報が把握しやすい資料を作成することが求められます。伝えたい内容を最もシンプルに表現するためには、どのデータが必要か、そしてそのデータをどのように表現すればよいかを、販促手法ごとに検討してリスト化することが大切です。 データ整理の真意は? さらに、必要なデータを収集する際には、それぞれのデータがなぜ必要であるのかを明確にしながら、情報の収集と整理を進めることが不可欠だと実感しています。

データ・アナリティクス入門

多面的視点で掴む成長のカギ

原因を探るヒントは? 原因を探る際には、与えられたデータのみならず、プロセス全体に目を向けることで、より深い示唆を得ることができます。このアプローチは、問題に関わる要素とそうでない要素を分ける「対概念」という考え方にも通じています。 A/Bテストの重要性は? たとえば、WEB画面のUIUX検討時には、これまで担当者が一案に絞ってリリースしていたため、思い描いた効果が得られなかったという事例があります。今後は、複数の施策を同一条件下で比較するA/Bテストを活用し、データに基づいて顧客に響く施策を選定する手法に切り替えていきます。 営業プロセス見直しは? また、営業活動による収益最適化のデータ分析では、営業プロセスが曖昧に分類されていたため、正確な要素抽出が困難でした。そこでフロントメンバーへの丁寧なヒアリングを実施し、プロセスを適切に分割することで、各要素を明確に特定し、分析精度を向上させています。 テスト実施の秘訣は? さらに、A/Bテストの実施にあたっては、期間設定や施策パターン数の考慮が重要なポイントとなっています。これらの条件をどのように整えるかが、テストの効果を左右する鍵となるでしょう。

戦略思考入門

選択と差別化の成功と失敗を学ぶ

どうして失敗を重視? 規模の経済や多角化について、成功例だけではなく失敗例も学びました。「なんとなくよさそう」という選択肢に飛びつかず、「うまくいかないケースはないか?」を意識して確認する必要があると感じました。 補足はどう工夫? 総合演習では、情報が足りない時にどのように補うかを考えながら取り組みました。日常生活でも、安易に選択してしまうことがあるのかもしれないと感じました。選択するかしないかを広い視野でとらえ、その背景を分析し、メリットとデメリットを正確に把握する必要があります。 どう差別化実現? 現在取り組んでいるペーパーレス推進の中では、「捨てる」ことと「他社との差別化」を両立する施策を意識しています。業界内の動向だけでなく、他業界での先行事例も注視しています。「なんとなくよさそう」で判断せず、定量的データを用いて根拠のある提案を行うよう努めています。 何を見極める? 定量的データを活用し、同業界だけでなく他業界の事例も広く集め、自社に活用できる部分がないかを検討しています。その際、自社の差別化につながるかどうかという視点を重視しています。また、ペーパーレス実現後の影響も考慮した施策を構築しています。

データ・アナリティクス入門

自社WEBメディアの問題解決に挑むリアルな試行錯誤

ミュージックスクール問題解決の手法は? 実際にミュージックスクールの課題をデータを用いて分析し、解決策を検討したところ、リアルな問題を考えることで、自分に置き換えリアルにイメージできるようになってきたと感じています。問題を問題解決ステップのWhat、Where、Whyまでを整理する習慣を身につけたいです。 WEBメディア運用でのベストプラクティスは? 私は自社WEBメディアの運用に従事しているため、以下のアプローチを取りたいと思います。まず、現状における問題を特定し、What、Where、Why、Howの各要素に分けて進めます。そして、A/Bテストやサイト上でのサムネイルの策定に時間をかけ、広告でのABテストにも時間をかけることで、効果を出していきたいです。 課題解決のプロセスで重要なことは? 原因をプロセス分解し、ボトルネックをきちんと把握することが課題解決の近道だと思いました。また、正解がない場合も広い視野を持ち、トライアンドエラーの精神で複数の選択肢を視野に入れて構築していくことが重要だと考えます。短期・長期のモデルを検討しながら、結果をしっかり分析し、最大限の効果が現れるように見極められるようになりたいです。

リーダーシップ・キャリアビジョン入門

心に響く伝え方のコツ

どう伝えるべき? 動画を拝見して、自身の1on1のふりかえりや、実際のシチュエーションにおいて自分がどのように伝えるべきかを考えるきっかけとなりました。よい内容は伝えやすい一方で、ネガティブな事柄については相手を傷つけないように配慮するあまり、伝え方に慎重になってしまう側面も感じました。今後は、相手が納得できる形で伝える技術を実践していくために、普段のコミュニケーションを通じて相手の価値観や仕事観をしっかり把握する必要性を改めて実感しました。 どんな対話が効果的? また、中間面談の時期に合わせ、相手自身が十分に振り返りができるような問いかけや対話を行いたいと考えています。その上で、出てきた内容をもとに、相手が日々の業務に納得し取り組めるよう、どのような支援やアドバイスが適切かを具体的に検討する所存です。 連携で評価はどう? さらに、中間面談では、これまで学んだ内容(WEEK2~5)を実践する予定です。加えて、夏ごろに参加する評価会議に向けて、適切な評価が下せるよう、関係者と連携しながら社員全体の状況を把握する努力をしていきます。その結果、業務や個人の成長支援に一層貢献できるよう取り組んでいきたいと考えています。

データ・アナリティクス入門

フレームワークが導いた学びの光

原因解析のコツは? what→where→why→howの順に問題を捉えることで、原因解析を体系的に進めやすくなります。フレームワークを利用することで、見落としなく検討でき、説明もしやすくなる点が非常に役立ちます。また、自分自身の思考のクセを理解することで、視野が偏らないよう意識することも大切です。情報分析を通じて、傾向を把握し、結論へと近づくプロセスは非常に有益です。 合意形成の秘訣は? 通常業務の場では、まずイシューを明確にし、その上で他者と合意形成を図ります。次に、多様なアイデアを出しながら仮説を立て、検証を重ねることで、より説得力のある説明が可能になります。単なる常識的な案ではなく、分析結果を生かしながら良い案を生み出すことに挑戦することが重要です。 重要なポイントは? 例えば、コストダウン施策の検討においては、膨大なデータの中からどの部分に着手するかを問い、自分にとって最重要と思われる情報に絞って集中的に分析します。仮説を立て、検証を繰り返す過程は、開発業務と同様の手法で進められます。そして、問題解決のためにどのような手段が最適かを考え、他者にも分かりやすく伝える工夫が、成功へと繋がるポイントとなります。

データ・アナリティクス入門

データ分析から始める業務効率化のアイデア集

分析はどのプロセスから始める? <印象に残った内容> ・プロセスに分解し、各プロセス毎に数値を見る ・A/Bテストの前に目的と仮説を明確にする ・データ分析はまず身近な課題から着手する A/Bテストの代替案は? <感想> A/Bテストはオンラインサービスとの相性が非常に良いが、対面サービスやコストの問題で簡単に実施できない場合の代替案が気になりました。 残業時間削減へのアプローチ ①社内で使用しているSFA(営業支援システム)の切り替えに伴い、入力画面のインターフェース検討においてFigma等のツールを使ってA/Bテストを実施し、手戻りが無いようにする。 ②今後の人員削減に伴い、業務の棚卸しを行う。 この切り替えは少し先になるため、思考訓練として自分の残業時間を減らすための施策を考えました。 まず、業務の洗い出しと各業務のプロセスの分析を行います。そして、以下の代案を検討します。 外注や自動化は可能? ・外注の可能性を探る  ・無料の外注が可能か  ・有料の外注が利用できるか ・自動化を進める ・不要なプロセスを廃止する 以上のステップを踏み、効率的かつ効果的な業務運営を目指したいと考えています。

デザイン思考入門

共感で広がるデザイン学び

講義の本質とは? 今回の講義を通じて、観察を通して顧客を理解し、効果的な表現方法を見出すというデザイン思考の本質を改めて振り返る機会となりました。デザイン思考の成功には共感の連鎖の構築が重要であると感じ、今後その手法をさらに学んでいきたいと思います。また、一緒に学べる仲間がいることも大変心強く感じました。 教育現場にどう活かす? 私自身は、デザイン思考を教育現場に取り入れ、授業として形にできればと考えています。顧客に寄り添う姿勢が商品開発だけでなく、日常的な対人関係や観察にも波及し、そこからの心遣いにつながると確信しています。今回、最初の講義に触れることで、学生にとっても分かりやすく、人生に活かせる可能性を感じることができました。 実践はどう進める? また、デザイン思考の講義を構築する上で、まずはその本質をどれだけ分かりやすく説明できるか、そして共感をどのように生み出すかが最も重要だと今は考えています。そのため、観察の方法論やそこからのインサイトの抽出プロセスを、単なる知識の習得ではなく実際の作業を通じて学ぶ内容として提供していく予定です。今後は、具体的な方法論についても検討を進めていきたいと思います。

データ・アナリティクス入門

標準偏差が拓く学びの新視点

データの全体像はどう捉える? 標準偏差を活用することで、データのばらつきを正確に把握でき、分析の全体像を掴むきっかけとなりました。平均値だけで物事を判断しないためにも、中央値など他の指標を併せて見ることの大切さを実感しています。 グラフで視覚的に理解できる? また、ヒストグラムは各グループの構成比を視覚的に捉えるのに非常に役立ちます。特に、世代などX軸の単位が明確なものの場合、グラフ化することで理解しやすくなると感じました。売上実績の分析など、データのばらつきを確認することで、より正確な施策の検討が可能になると考えています。 苦手意識は克服できる? 個人的には、以前は標準偏差に対して苦手意識がありましたが、全体のばらつきをとらえる重要な指標として積極的に活用する決意を新たにしました。さらに、ヒストグラムのように一目で内容を把握できるグラフ作成を通じて、プレゼンテーション時の相手の理解促進や、意思決定のスピード向上に貢献したいと思います。 分析の認識共有はどう進む? 今後の日々の分析においては、標準偏差やその他の代表値を取り入れ、データ全体の認識を共有することで、正確な判断に結びつけていきたいと考えています。
AIコーチング導線バナー

「検討」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right