データ・アナリティクス入門

データ分析で仮説と検証を学ぶ

仮説の立て方を見直すには? 今まで、データ分析において仮説から検証のプロセスをなんとなくで行っていたが、複数の仮説を立てることや、網羅性を持たせることはあまり意識していなかった。また、立てた仮説の検証だけでなく、反対の事象を裏付けるデータも収集することで、より説得力のある仮説検証ができる点も意識すべきだと感じた。 データ分析を業務にどう活かす? 今後、業務でデータ分析を行う際には、仮説立てから検証までのプロセスを意識的に組み込むようにしたい。現在取り組んでいる運転資本の改善についても、問題がどこにあるのか(Where)を仮説立てし、既存のデータから分析を行うようにする。そして、Whereが特定できた後には、なぜその問題が生じたのか(Why)の仮説を立て、その仮説を立証するための分析方法を検討するつもりだ。

クリティカルシンキング入門

学びが心を動かす瞬間

イシューの本質は? まず、イシューとは、今ここで考えるべき問題を意味します。扱うべき事柄を問いの形で設定し、何に着目するのかを明確にすることが大切です。そのため、常にイシューから逸脱しないよう意識しながら議論を進めます。 切り口の選び方は? 次に、イシューを分かりやすくするため、複数の切り口で要素に分解します。数字については、一手間加えて分析することで、より具体的な視点を持つように努めます。 議論はどう進む? また、問題に取り組む際は、いきなり考え始めるのではなく、まずイシューを明確に特定し、その構成要素に分解してから本格的に検討するようにします。複数のメンバーで取り組む場合は、各自がイシューや要素を共通認識として把握できるよう、ホワイトボードなどに記録しながら議論を開始することが求められます。

データ・アナリティクス入門

仮説検証で広がる実務の可能性

仮説思考の基盤は? 仮説思考の重要性を実感しました。まずは、問題解決のために仮説を立て、その仮説が正しいかどうかを検証するためのデータを収集するという基本プロセスが、結論を導くための確かな基盤になると感じました。 複数仮説の選び方は? また、複数の仮説を最初に立て、その中から有力なものを選別していく方法は、柔軟かつ多面的なアプローチを可能にします。さらに、仮説を立てる際には、3Cや4Pなどのフレームワークを活用することによって、問題をあらゆる角度から捉え、具体的なデータ収集の方法(既存のデータの活用や新たなデータの収集)の選択にもつながることを学びました。 実務活用のポイントは? この学びを活かすことで、実務においても課題の原因究明や効果的な打ち手の検討に役立てることができると感じました。

データ・アナリティクス入門

固定観念を打破する新視点

固定観念はどう対処すべき? 今週の講義では、マーケティング分野に関して既に知っている内容も多く取り上げられましたが、知識があるがゆえに陥りがちな固定観念に注意する必要があると感じました。これまでの経験から「おそらくこれが原因」と考えてしまう傾向がありましたが、フレームワークを活用し、自分が持っていない視点から再確認することの重要性を再認識しました。 多角的判断はどう進める? また、マーケティング施策の検討時には、自社や自分自身の状況だけに注目しがちですが、競合や市場といった複数の観点から総合的な判断を行うことが大切だと実感しました。さらに、複数の選択肢の中から意思決定をする場合、判断基準を点数化し合計点で評価する方法が合理的であるとの知見も得たため、今後の実践で積極的に活用していきたいと考えています。

クリティカルシンキング入門

グラフで魅せる伝え方の秘訣

グラフ選びは何が肝心? キーメッセージに合ったグラフ選びが大切です。まず、読んでもらうために、キーメッセージの工夫を重ねる必要があります。抽象的な内容ではなく、具体的なメッセージを用いて、上司や顧客に何を伝えたいかを明確にすることが求められます。 スライドの心得は? また、何のためのメッセージなのか、細部まで考えたうえで資料を作成することが重要です。作成する際には、本当にこのスライドで良いのか、読み手に分かりやすい文章になっているかを意識し、今後のアクションや示唆も資料に落とし込むように努めます。 日々の見直しはどう? 日々の業務においても、必ずキーメッセージを念頭に置いて文章や資料の作成を行います。どのスライドも、この内容で問題がないか、無駄な部分がないかを常に検討することを心がけています。

クリティカルシンキング入門

多角的思考で広がる視野と提案力

視点の多様さに気づく瞬間 同じ質問に対する回答を見て、自分では考えもつかない視点が数多く存在することに気づきました。自分は比較的柔軟に考えていると思っていましたが、実際にはそうでもないことを実感しました。 客観的視点の重要性 トラブルが発生した際には、主観的な対応ではなく、客観的な視点を取り入れることで、より説得力のある内容にできると考えています。この考え方は、顧客への提案資料を作成する際にも役立つと思います。 複数の視点をどう活かす? 自社の立場だけでなく、顧客の立場、さらには経営者や管理職、一般社員など、さまざまな視点を考慮してトラブル対応や報告書、提案資料を作成していきたいです。そして、それらを検討した内容に加え、第三者の意見も取り入れて、より説得力のある内容にしていきたいと思います。

クリティカルシンキング入門

振り返りから見える成長の瞬間

自分で手を動かす意義は? 与えられたデータをただ眺めるだけでなく、必ず自分自身で手を動かし、さまざまな観点から検討することが大切です。一つの切り口だけでは見落としがあったり誤った結論に至る可能性があるため、複数の視点をもって仮説を立て、検証する必要があります。まずは、全体をどのように定義するかを明確にしてから、データの分け方を考えてみてください。そして、その考え方が本当に正しいのか疑う姿勢も忘れずに持つようにしましょう。 データが提案の鍵か? 通常の業務でデータを扱う機会があまりない場合には、まずクライアントとの会話の中で参照できるデータについて触れてみると良いでしょう。提案の際、市場や現状の理解を示すためにも、データを活用しながら仮説をもとにさまざまな切り口で検証していくことが求められます。

クリティカルシンキング入門

多面的理由で心を動かす説得

説得理由の整理はどうする? 相手を言葉で説得する際、説得理由によって「勝ち筋」が変わると実感しています。論理的な説明だけでは、相手の懸念や関心に対する理由付けが十分でなければ納得を得ることは難しいため、多面的な理由の検討が必要です。 説明活動の課題は何? これまでの説明活動では、上長や他部署に対して、結論部分は大筋で合意を得られたものの、理由の部分で相手の懸念を解消できず、説明をやり直すケースが多くありました。原因は、相手の立場や考えを十分に考慮せず、単一の視点で理由付けをしていた点にあると考えています。 実践改善の方法は? 今後は、ピラミッドストラクチャーなども活用し、幅広い理由を整理することで、相手に伝えるべきポイントを的確に選別し、より効果的な説明を実現していきたいと考えています。

マーケティング入門

製品特長を活かした効果的な差別化戦略とは

製品価値の最大化方法は? 製品の特長を掛け合わせることで唯一無二の価値を生み出すことが、事例を通じてよく理解できました。しかし、製品のポジショニングを考える際には、特長を増やしすぎず、二軸で顧客ニーズに沿った差別化が必要だと理解しました。 どう顧客ニーズを捉える? まず、自社の製品の特長を具体的にいくつか書き出してみます。次に、顧客ニーズを理解するためのリサーチを行い、その結果を基に二軸を定めて、プロモーション活動に繋げていきたいと思います。 キーメッセージはどう伝える? そのうえで、担当する顧客に対して、自社製品を二軸で捉えたキーメッセージを用いて、徹底的にプロモーションを試みたいと思います。その結果を踏まえて、設定した二軸が適正か再検討し、新たなキーメッセージを考えたいと思います。

戦略思考入門

理論と実践で磨く戦略力

戦略思考はどこに効く? 戦略的な思考方法を体系的に学ぶことができ、実践を重ねることでフレームワークの理解が深まりました。講座で得た知識は、単にビジネスシーンだけでなく、自己分析にも有効であり、今後のビジネスプランを構築する際に大いに役立てていきたいと感じています。 部署立て直し戦略は? まずは、自分の部署の立て直しにこのフレームワークを活用する計画です。自社の理解を深め、企業のゴールを踏まえた上で、部署の目標設定と現状把握を行います。自分自身で課題を見つけ、解決策を考えた上で、その考えをスタッフとも共有し、各自に現状把握から課題発見と解決策の検討を促していきます。 工数削減効率向上は? また、契約上の人月がマイナスである現状を踏まえ、工数を削減することで業務の効率化に取り組む予定です。

データ・アナリティクス入門

AIコーチングで広がるグループ学び

グループの雰囲気はどう感じた? 初回は緊張しましたが、グループワークでは話しやすい雰囲気で進行できたため、大変助かりました。また、AIコーチングによる問いかけが非常に面白く、考えるきっかけとなりました。 研修効果は本当に測れた? 研修効果の測定に向けては、既存の受講アンケートで収集した定性・定量データを十分に活用できていないと感じています。今後は、受講者の満足度アンケートや受講前後の評価、テストスコアの推移を分析し、研修プログラムが成果につながっているのかを検証していきたいと考えています。 業界のデータはどう活かす? さらに、各業界におけるデータの利活用方法や、これからの取り組み動向についても知りたいと思っています。その情報を基に、自社や業務への取り入れ方を検討する参考にしたいです。

データ・アナリティクス入門

納得!平均の使いこなし術

加重平均と幾何平均はどんな違い? 加重平均と幾何平均の考え方は非常に興味深く、説明を聞いて納得できました。ただし、実際にどちらを使い分けるかの判断基準はまだ掴みきれておらず、特にルートが絡む部分には少し抵抗を感じています。今後は使いこなせるように、知識を深めていきたいと考えています。 部門間売上分析は? 部門間での売上分析においては、加重平均が有効だと感じています。現在業務で部門別の売上分析を行っているため、今後は加重平均を積極的に取り入れていく予定です。また、幾何平均についても自己学習を進め、どのように業務に活かせるかを検討していきたいと思います. 適用例はどうすべき? グループ内でも幾何平均の適用例や利用場面について話し合い、理解を深める機会を持ちたいと考えています。
AIコーチング導線バナー

「検討」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right