戦略思考入門

未来を創る戦略のヒント

分析手法をどう選ぶ? 戦略立案の際、PEST、SWOT、5フォース分析を用いて外部および内部環境を把握し、さらにVRIO分析によって自社の強みと顧客ニーズを照らし合わせる重要性を学びました。これにより、競合との差別化と競争優位の構築が実現できるという実感を得るとともに、各種フレームワークが思考の偏りを正し、戦略提案の明確性と説得力を高める有用な手段であることが理解できました。 差別化はどう実現? また、教育業界は年々外部環境の厳しさが増しており、各大学が受験生の獲得に向けてさまざまな差別化戦略を模索している現状があります。しかし、経営的に実効性があり、かつ学生や保護者にとって魅力的な差別化を実現することは簡単ではありません。本講義を通じて、差別化は奇抜な発想ではなく、社会動向や市場ニーズを正確に読み取る「時代を読む力」に根ざしていると再認識しました。 大学改革の方向は? 特に大学では、学部や学科の再編、教育内容の見直し、広報手法の革新などにこの視点を取り入れることで、持続的な成長が期待できると感じました。さらに、中長期的な計画や入試戦略の策定においても、十分な環境分析を行い、的確なポジショニングと内部資源の見極めを実施する重要性を強く感じました。

リーダーシップ・キャリアビジョン入門

キャリアアンカーで新たな自分発見

キャリア診断で気づいた点は? キャリアアンカーという言葉は以前から耳にしていたものの、その実際の内容については初めて知る機会となりました。8分類をただ見ただけでは自分にどのタイプが当てはまるか判断するのが難しかったため、診断を実施してみたところ、特定専門分野型と純粋な挑戦型がほぼ同率で現れました。 結果の一貫性は何故? また、DiSCなどのパーソナリティ診断は環境によって結果が変動するものだと考えていたのですが、キャリアアンカーは一貫性があるという点に意外性を感じました。同時に、キャリアサバイバルという考え方を通じて、キャリアの棚卸しやPEST分析といった手法を組み合わせることで、自分のキャリアデザインや将来像を具体的に考えるきっかけとなりました。 リーダーの課題は? リーダーとして自分のキャリアをしっかり考える必要性を強く感じ、お盆休みを機に、じっくりと自己の振り返りの時間を確保し、キャリアアンカーを再確認するとともに、今後のキャリアの在り方や将来展望について見つめ直していきたいと思います。 他者との視点交換は? また、自分の中でキャリアの軸があまり明確ではなかったため、他の方々のキャリア観についてもぜひお話を伺いたいと感じました。

クリティカルシンキング入門

深掘りで磨く伝わる分析術

データ理解はどう変わる? 来場者数や店舗別売上の分析を通じ、データの切り分け方やグラフ作成、説明方法の違いによって、相手の理解度に大きな差が生じる可能性があることを学びました。また、他者が提示した集計データやグラフを直感的に判断するだけでは、誤った認識を抱くリスクがあることにも気づかされました。 実務にどう活かす? 今後は、提示されたデータに対して一歩踏み込んだ検証を行い、分析結果を示す際には相手の理解を意識しながら、より深い考察を加えて伝えていきたいと考えています。実際、グループ店舗の月次や年次実績の集計・分析を担当しているため、今回の学びはすぐに実務に活かすことが可能です。 提示方式はどうする? 店舗別データを分析する際には、結果の提示に留まらず、批判的な視点で多角的に検証し、結果を受け取る側の立場を意識した「伝わる見せ方・伝え方」に努めたいと思います。今日の演習で得た気づきを早速明日からの業務に活かし、月末に実施するグループ店舗の月次実績の集計・分析や回覧資料の作成において、これまでの方法を見直し、データの示し方や分析の切り口を再考する予定です。従来の手法に囚われることなく、より伝わりやすく、意味のある資料作成を目指して取り組んでいきます。

データ・アナリティクス入門

データが拓くビジネスの未来

分析の本質とは? 分析とは、物事を分け整理することと、比較対象や基準を設けて比較することの両面が本質だと感じました。また、データ分析の目的や、どの項目をどのような形であたりをつけるのかという入り口の考え方も学べ、基本的な考え方がしっかりと理解できたと実感しています. 将来の分析戦略は? 今後は、顧客IDを活用して、CRM、Web行動、イベント、購買実績の時系列統合基盤を構築する力を高めるとともに、ビジネスゴールを離脱点や購買シグナルなどの具体的な分析課題に落とし込むスキルを向上させたいです。また、転換率やLTVなどのKPIを定義し、ダッシュボード上でリアルタイムに可視化しながら、閾値やアラートを設計する能力も伸ばしていく必要性を感じました. 実行計画はどう? 具体的な行動計画としては、まずCRM/MAの構造とAPIについて学び、ダッシュボードの運用や自動連携が自在に行えるレベルまで習熟することを目指します。次に、顧客ID基盤を活用してデータの抽出と整形を行い、分析用CSVを定期的に生成できる仕組みを構築します。さらに、RやPythonを用いた回帰分析やクラスタリングなどの手法を実施し、得られた示唆を速やかに施策へと反映できるサイクルを確立する方針です.

クリティカルシンキング入門

分解でひらける!業務改善の秘訣

分解の意義は? 物事を分解する重要性について学び、状況の解像度が上がり、どこに問題が潜んでいるかが見えやすくなることを実感しました。問題解決にあたり、全体をそのまま捉えるのではなく、各部分に分けて考えることで、より明確な対策が立てられると感じました。 データ分類は何で? 特に、データを仮説をもって分類し、どの切り口で分ければ自分が知りたい情報が明確になるのかを考えるプロセスが印象的でした。層別分解、変数分解、プロセス分解といった具体的な手法を学ぶことで、実際の業務においても、売上やクライアント提案、SNSなどのデジタルメディア戦略に応用できると感じました。 どの対策が有効? 実際の事例として、例えば自分や担当媒体の売上分析において、売上構成を細分化して傾向をつかむと、具体的な対策案をいくつも立てられることを学びました。また、クライアントへの提案では、ありたい姿を数字で設定し、その後、どの変数が大きな影響を及ぼしているかを分析することで、より説得力のあるプランが構築できると実感しました。 実践への自信は? 今回の学びは、単なる理論にとどまらず、自社メディアの成長や日々の業務改善にも直結する方法論であり、今後の実践に向けた大きな自信につながりました。

クリティカルシンキング入門

仮説から紐解く学びのヒント

どの切り口で捉える? ある事象のデータを分解する際、まずは仮説を立て、切り口を明確に設定して可視化することで、精緻な結果を導き出すことができると感じました。 本当の答えは? また、目の前にある「いかにも」正しそうな答えに安易に飛びつくのではなく、一旦冷静になり、本当にその答えで問題ないのか疑問を投げかけ、深掘りする姿勢が大切だと実感しています。 どう分解すべき? さらに、データを漏れなくダブりなく分解することが、本質にたどり着くために重要であり、この考え方は日常業務にも大いに活用できると考えます。 グラフは説得力? 具体的には、新商品企画の提案などで顧客データを分析する際、この手法が大いに役立つと感じています。視覚化されたグラフは、商品提案の信頼性を伝える上でも非常に有効です。 数字で伝える? また、数字を用いた説明を普段の業務に取り入れることで、他部門とのコミュニケーションがスムーズになり、その必要性をより明確に伝えることができると考えています。 発想はどう磨く? 最後に、仮説の立て方や切り口の持ち方は状況に応じて変化する部分もあり、どのような発想が最も効果的なのか、その上手なやり方についてもぜひ意見を聞いてみたいと思いました。

クリティカルシンキング入門

イシューを解決する力を磨く旅

イシュー解決はどう可能? 「イシュー、つまり今解決すべき問題を特定し、それを解決する方法を多角的に探ることが重要だと改めて気付きました。その時々に適したイシューを設定することが、仕事を進める上で特に大切です。観光業を題材にしたケーススタディを通じて、データを分析し、課題を把握して解決策をイメージする力を養うことができました。 チームで何すべき? 仕事の場面でもイシューを最初に特定してから解決策を考える、という手順を意識したいものです。チームで仕事をしていると、つい思いついた解決策に飛びついてしまうことがありますが、一度立ち止まりチーム全体でイシューを正確に把握し、それから解決策を考えて行動するようにしたいと思います。 データ分析で分かる? データ分析によって課題を把握し解決策を立てる作業は、POSデータの分析などにも役立ちます。グラフ化やデータの分解などの手法を積極的に活用していきたいです。 チーム会議は有効? 自分のチームでも、解決すべき問題を明確にするためのミーティングを少なくとも週に一度以上行い、チーム全体で方針を共有することを心がけています。POSデータを分析し、わかりやすくまとめることで、メンバー全員が理解しやすくなるよう努めています。

データ・アナリティクス入門

データ分析で見えてくる未来へのヒント

データ分析の基礎を理解するには? データ分析を始めるにあたり、まずはデータの形式を理解し、その違いを把握することが重要だと感じました。分析に必要なデータを集め、形式に合わせた加工を施し、さらに可視化することで示唆を得る流れを認識しました。特に、データの性質をしっかり理解しないままでは、可視化しても意味がないことを学びました。 どう業務課題を探索する? 例えば、各店舗での様々な商品の契約状況から、それぞれの商品の契約者に共通する特徴を可視化したり、取引履歴と商品の契約状況の関連性を探るといった作業は、まずデータの性質を把握することから始まります。データを比較し、その特徴を掴むことで、業務課題に関連するデータが何であるかを見極めることができます。 他社事例をどう活かす? また、他社のデータ活用事例を知ることで、自社の業務に置き換えて考え、業務上の課題を発見する手がかりとすることができました。社内においても、各種システムで収集・蓄積されているデータの内容を把握し、それを整理して業務課題を解決するための手法を模索することが大切です。こうしたプロセスを経て、データの性質を十分に理解し、適切に可視化し比較することで、より良い業務改善に繋げることができると感じました。

戦略思考入門

多角分析で未来をひらく

戦略の全体像は? 経営戦略は大きく、①環境分析、②経営課題特定、③戦略立案、④戦略実行&レビューの流れで進められます。環境分析や課題特定においては、3C分析、PEST分析、バリューチェーン分析、5 Force分析、SWOT分析など複数のフレームワークが有用です。いずれか一つだけで意思決定するのではなく、複数の分析手法を組み合わせ、ストーリーを構築することが重要です。特に外部環境の分析では、具体的な数値を用いて、相対的に最も対処すべき打ち手を考える必要があります。 どうやって分析する? たとえば、まずPEST分析でマクロ環境の長期的な変化を把握し、次に5 Forces分析で業界の収益構造を理解します。さらに、3C分析を通じて市場、競合、自社の現状を整理し、バリューチェーン分析で内部の強みと弱みを評価します。これらの分析結果を統合して戦略仮説を立て、SWOT分析で外部機会と内部強みを結びつけることで、戦略オプションを具体的に導き出します。 説明不足はなぜ? 一方で、GAiLと動画学習で扱われるフレームワークが異なる理由が十分に説明されず、疑問に思いました。また、各フレームワークの使い分けや具体的な活用場面についても、整理が不十分な印象を受けました。

アカウンティング入門

未来へのヒントをBSから探る

BS調達はどう見直す? BSの調達方法については、提供価値を実現するために必要な借入は、単なる負債ではなく適切な選択であると考えています。一方で、無借金にこだわると、提供価値が損なわれる可能性があるため、PLだけでなくBSも投資計画の検討に取り入れる必要があります。 業界ごとのBS違いは? BSは各業界で特徴が異なり、古くからある産業では負債が相対的に大きくなる傾向がありますが、SaaSなど比較的新しい産業では、純資産が大きく、負債が少なくなる傾向にあります。この違いは、PLの当期純利益がBSの純資産の利益余剰金に反映され、株主への配当など企業の経営に直接影響を与えるため、重要な視点です。 戦略策定はどう考える? 私自身は、担当部門の投資計画策定の際、過去・現在・未来のBSを総合的に分析し、提供価値に合致する事業戦略を描くことを心がけています。具体的には、過去のBSから傾向や示唆を読み取り、そこから将来的に求められるBSをシミュレーションする手法を実践しています。 資金調達の新視点は? また、新しい業界においては、返済が必要な借入による負債ではなく、資金調達によって純資産を増加させる方法が望ましいのかどうか、改めて考えさせられる内容でした。

クリティカルシンキング入門

データ分析に革命を起こす秘訣

データ分析の効果的な手法とは? データ分析を効果的に行うには、仮説を持って実際にデータを操作し、その結果を視覚化することが重要です。分析の切り口を考える際には、概念(例えばWhen、Who、Howなど)を意識して、網羅的に考える必要があります。一見、経時変化がないように見える場合でも、その内訳を確認し、本当に変化がないのかを疑ってみるべきです。 業績分析と来年度対策に必要なことは? 年度末に向けては、今年度の業績分析と来年度の計画策定が求められます。そのために、明確な切り口を持ち、業績に関する分析をさらに深化させることが大切です。これまでは一度分析を行うとそれに満足して終わってしまいがちでしたが、今後は他の視点や可能性を常に探求する姿勢を持とうと思います。 多角的視点で分析するには? 業績に関連する分析には通常ストラック図を用いますが、組織全体で集約するだけでなく、四半期別、顧客別、担当者別、契約形態別など、様々な切り口から分析を試みると、従来見えなかった特徴や課題を明確にすることができるかもしれません。また、EXCELのPivotテーブルやPivotグラフを使いこなすことで、自分の意図するデータの可視化ができるよう、積極的に手を動かしていきます。

データ・アナリティクス入門

現場を解剖!数字と直感のコラボ

見えるギャップは何? データ分析では、目についた情報にとらわれやすく、都合の良い解釈に陥るリスクがあると感じました。しかし、What / Where / Why / Howの切り口で数値同士を比較し、実際の現場で何が起きているのか確認することで、あるべき姿と現状のギャップを明確にし、解決への道筋を意識することが大切だと学びました。 KPI設定の真意は? また、サイト分析におけるKPI設定では、ロジックツリーの考え方を活用して全体を俯瞰し、各階層に分解するMECEを意識したアプローチに新たな気づきを得ました。こうした手法は、課題解決や売上、集客の分析においても非常に有用だと考えています。 具体分析の切り口は? さらに、現在取り組んでいるECサイトのデータ分析では、感度の良い切り口を増やし、より具体的な分析を行いたいと思います。クライアントのサイト課題をあぶり出し、ロジックツリーに落とし込むことで、強化すべきポイントを整理する作業に役立てていくつもりです。 今後の施策は? 引き続き、現場の状況確認を踏まえながら、What / Where / Why / Howの視点とMECEを意識して分析を進め、課題解決に向けた具体的な施策を模索していきます。

「分析 × 手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right